Service of SURF
© 2025 SURF
This study aims to evaluate the effect in the energy network of a big shared of decarbonise vehicles (NGV and EV) based on car-use profiles of current conventional and electric vehicles in the city of Groningen. Charging profiles were developed within CBS dataset of mobility and transport, and the electric charging profiles provided by E-Laad.
The number of light commercial vehicles (LCV) in cities is growing, which puts increasing pressure on the liveability of cities. Small electric freight vehicles and cargo bikes can offer a solution, as they take less space, can manoeuvre easily and free from polluting emissions. Within the two-year LEVV-LOGIC project, (2016-2018) the use of light electric freight vehicles (LEFVs) for city logistics is explored. The project combines expertise on logistics, vehicle design, charging infrastructure and business modelling to find the optimal concept. This paper presents guidelines for the design of LEFV based on the standardized rolling container (length 800 mm, width 640 mm, height 1600 mm) and for the charging infrastructure.
Within the FREVUE project 80 fully electric freight vehicles have been deployed. It showed that city logistics operations can be performed by electric freight vehicles, but that at the moment the high vehicle purchasing costs are still a barrier for large scale utilisation of electric freight vehicles for logistics operations. Only for small EFVs (lighter than 3.5 tons) a short term feasible business case is possible. For the larger vans and rigid trucks, a feasible business case is not yet possible from an operator’s perspective, often not even with subsidies. Copyright © 2018 Society of Automotive Engineers of Japan, Inc. All rights reserved
In september 2017 startten de lectoraten LEAN-World Class Performance en Automotive Research van de HAN University of Applied Sciences met het onderzoek ‘Werkplaats op Weg’ (cofinanciering door SIA middels het RAAK-MKB subsidieprogramma). Hierin werd de vraag beantwoord: “Wat betekenen alle technologische ontwikkelingen voor de gewenste inrichting van onze onderhoudsprocessen? Wat betekent dit voor acties die we nu en in de nabije toekomst moeten nemen?” De autowerkplaats van de toekomst zal - door innovaties in autotechnologieën, toenemende zorgen over het milieu en klimaat, en een veranderende toekomstvisie op mobiliteit - verschillen van huidige werkplaatsen. Deze ontwikkelingen leidden tot grote onzekerheid bij MKB-ondernemers, met name over de mogelijke effecten op de onderhoudsvraag van voertuigen. Werkplaats op Weg heeft het kennishiaat hieromtrent opgepakt. Op basis van specifieke casussen, interviews en praktijkonderzoeken zijn zes potentiële bedrijfstypes voor het MKB gedefinieerd. Deze zijn gelinkt aan de eerder beschreven technologische en maatschappelijke ontwikkelingen. De relevantste technologische ontwikkelingen die hierin centraal stonden zijn Connected, Autonomous, Shared en Electric Vehicles (CASE; zie figuur 1). De analyse heeft geleid tot concrete en toegankelijke aanbevelingen en online tools. Hiermee kunnen bedrijven binnen de sector hun eigen strategische keuzes maken met betrekking tot het uitvoeren en organiseren van werkzaamheden in hun werkplaats. Tevens is vastgesteld welke consequenties er zijn voor automotive opleidingen. Resultaten van het onderzoek zijn verzameld op de website: www.werkplaatsopweg.nl Figuur 1: Resultaten Werkplaats op Weg Met behulp van de Top-Up willen we onderzoeken hoe ondernemers, onderwijzers en onderzoekers om kunnen gaan met onverwachte, disruptieve veranderingen zoals de Coronacrisis, als aanvulling op de eerdere bevindingen die vooral gericht waren op het omgaan met verwachte technologische innovaties. Gezien de enorme en radicale impact van de huidige coronacrisis, is dit het perfecte moment om de sector extra aandacht en ondersteuning hiertoe aan te bieden.
To reach the European Green Deal by 2050, the target for the road transport sector is set at 30% less CO2 emissions by 2030. Given the fact that heavy-duty commercial vehicles throughout Europe are driven nowadays almost exclusively on fossil fuels it is obvious that transition towards reduced emission targets needs to happen seamlessly by hybridization of the existing fleet, with a continuously increasing share of Zero Emission vehicle units. At present, trailing units such as semitrailers do not possess any form of powertrain, being a missed opportunity. By introduction of electrically driven axles into these units the fuel consumption as well as amount of emissions may be reduced substantially while part of the propulsion forces is being supplied on emission-free basis. Furthermore, the electrification of trailing units enables partial recuperation of kinetic energy while braking. Nevertheless, a number of challenges still exist preventing swift integration of these vehicles to daily operation. One of the dominating ones is the intelligent control of the e-axle so it delivers right amount of propulsion/braking power at the right time without receiving detailed information from the towing vehicle (such as e.g. driver control, engine speed, engine torque, or brake pressure, …etc.). This is required mainly to ensure interoperability of e-Trailers in the fleets, which is a must in the logistics nowadays. Therefore the main mission of CHANGE is to generate a chain of knowledge in developing and implementing data driven AI-based applications enabling SMEs of the Dutch trailer industry to contribute to seamless energetic transition towards zero emission road freight transport. In specific, CHANGE will employ e-Trailers (trailers with electrically driven axle(s) enabling energy recuperation) connected to conventional hauling units as well as trailers for high volume and extreme payload as focal platforms (demonstrators) for deployment of these applications.
As electric loads in residential areas increase as a result of developments in the areas of electric vehicles, heat pumps and solar panels, among others, it is becoming increasingly likely that problems will develop in the electricity distribution grid. This research will analyse different solutions to such problems to determine Using a model developed as part of this project, we will simulate various cases to determine under which circumstances load balancing at a community-level is more (cost) effective than alternative solutions (e.g. grid reinforcement and/or household batteries).