Service of SURF
© 2025 SURF
Collaborative learning tasks may represent an effective way to stimulate higher-order processes among high-ability students in regular classrooms. This study investigatedthe effects of task structure and group composition on the elaboration and metacognitive activities of 11th grade preuniversity students during a collaborative learning task: 102 students worked in small groups. On an ill-structured or moderately structured task. Differential effects forcognitive ability were investigated using a continuous measure. Likewise, the effects of group composition were examined using a continuous measure of the cognitiveheterogeneity of the group. The group dialogues were transcribed and coded. Analysis revealed an interaction effect between task structure and cognitive abilityon students’ elaboration and metacognitive activities. Task structure had a negative effect on the elaborative contributions of high-ability students. For students with lower abilities, task structure had a positive effect onelaboration and metacognitive activities. No effects were found of the cognitive heterogeneity of the group. Group composition seemed not to be related to group interactionamong 11th grade pre-university students. The results indicate that open-ended collaborative tasks with little guidance and directions on how to handle them, canstimulate higher-order processes among high-ability students and may offer them the challenge they need.
MULTIFILE
Researchers in CSCL have used a wide range of qualitative and quantitative methods to track students' cognitive involvement during collaboration. However, neither individual method suffices the need to capture the dynamic evolvement of students' epistemic engagement in CSCL. We developed Epistemic Synchronization Index (ESI) to quantify students' epistemic engagement and evolvement. ESI reveals the knowledge elaboration process of groups, and it helps researchers as well as teachers to distinguish epistemic involvement between members within one group.
This case study illustrates the sequential process of the joint and individual knowledge elaboration in a computer-supported collaborative learning (CSCL) environment. The case comprised an Internet-based physics problem-solving platform. Six Dutch secondary school students (three males, three females) participated in the three-week experiment. They were paired based on self-selection. Each dyad was asked to collaborate on eight moderately structured problems concerning Newtonian mechanics. Their online interactions, including their textual and pictorial messages, were categorized and sequentially plotted. The three dyads showed three different collaboration patterns in terms of joint and individual knowledge elaboration.