Service of SURF
© 2025 SURF
Toekomstige professionals moeten complexe problemen kunnen oplossen. Hoeleren we dit hbo-studenten? Design thinking en ontwerpgericht onderzoek bieden beiden dezelfde logica voor het ontwerpen van onderbouwde oplossingenvoor complexe problemen. Ze verschillen in accent, met name in inhoudelijke uitgangspunten en de organisatie van het ontwerpproces. Zowel design thinkingals ontwerpgericht onderzoek zijn geschikt voor het oplossen van complexeproblemen, zeker als hun sterke punten in opeenvolgende ontwerpcycli wordengecombineerd.
Societal actors across scales and geographies increasingly demand visual applications of systems thinking – the process of understanding and changing the reality of a system by considering its whole set of interdependencies – to address complex problems affecting food and agriculture. Yet, despite the wide offer of systems mapping tools, there is still little guidance for managers, policy-makers, civil society and changemakers in food and agriculture on how to choose, combine and use these tools on the basis of a sufficiently deep understanding of socio-ecological systems. Unfortunately, actors seeking to address complex problems with inadequate understandings of systems often have limited influence on the socio-ecological systems they inhabit, and sometimes even generate unintended negative consequences. Hence, we first review, discuss and exemplify seven key features of systems that should be – but rarely have been – incorporated in strategic decisions in the agri-food sector: interdependency, level-multiplicity, dynamism, path dependency, self-organization, non-linearity and complex causality. Second, on the basis of these features, we propose a collective process to systems mapping that grounds on the notion that the configuration of problems (i.e., how multiple issues entangle with each other) and the configuration of actors (i.e., how multiple actors relate to each other and share resources) represent two sides of the same coin. Third, we provide implications for societal actors - including decision-makers, trainers and facilitators - using systems mapping to trigger or accelerate systems change in five purposive ways: targeting multiple goals; generating ripple effects; mitigating unintended consequences; tackling systemic constraints, and collaborating with unconventional partners.
MULTIFILE
This full paper works towards merging ‘frugality’ and ‘design thinking’ into a simplified framework for a workshop routine as a stepping stone for SMEs in developed countries to create and capture value of frugal innovations. Innovations which are born out of the notion that we can do more with less, or for less. This framework is aimed at reaching a specific group of SMEs, in this paper called the peloton of SMEs, a large group of SMEs which generally have lower growth ambitions and growth potential in comparison to the frontrunners. This group is often overlooked by (regional) governmental innovation programmes due to a primary focus on the same industry’s frontrunners. The framework was first tested with students, discussed with experts and eventually tested with SMEs from the Agribusiness sector in the Netherlands. Frugal Elements added to the design thinking process are; (a.) a Frugal Lens (b.) Frugal Business Model Patternsfor BMI (c.) Frugal leadership development (d.) Frugal Validation of the solution (e.) Frugal Intervention (limited time, limited theory, vertical learning community, practical tools). Although the first Pilot has been a succes in terms of helping participating SMEs to create innovations, more research is necessary for the design of a final framework which is expected to contribute to the frameworks that are currently available to SMEs in frugal and sustainable business modelling.
Within the framework of the “Greening Games” project, we will develop, test and distribute flagship didactic materials addressing the interdisciplinary nature of green digital gaming. These will be tested in selected higher education programs and finally shared as open access content for the broader academic and teaching community. It is our core strategic responsibility to educate students about the relations between digital games and environment. We believe that the more aware students of today will become greener game designers, programmers, and academic leaders of tomorrow. At the centre of our partnership’s didactic philosophy are human responsibility, ethical game design and sustainable gaming culture. Societal IssueVideo games serve as technological marvels and cultural reflections. McKenzie Wark suggests they are integral to a shared culture, fostering critical thinking. Games act as arenas for cultural values and environmental awareness. Climate-aware video games, often referred to as 'green games' or 'eco-games,' raise ecological consciousness and reconnect players with nature. For example, Riders Republic, which replicates real-world terrain using satellite imagery, inspires eco-awareness. However, the environmental footprint of video games, reliant on digital electronics and resource-intensive consoles, poses challenges. Developers, manufacturers, and gaming giants must address these impacts. Benjamin Abraham emphasizes sustainable game development as a holistic solution beyond incorporating green content.Benefit to societyBy developing teaching materials on green gaming for higher education, we create the following impact. We will…- increase the awareness of this subject among Bachelor’s and Master’s students.- enhance students’ knowledge of green gaming and their ability to integrate existing solutions into their game projects.- stimulate more research interest among research staff as well as students.- facilitate the uptake of pedagogical resources on green gaming by lecturers and professors.- create a European research community around the topic.- raise the visibility of green game studies among the game industry and wider public.