Service of SURF
© 2025 SURF
Drug consumption estimates are of relevance because of public health effects as well as associated criminal activities. Wastewater analysis of drug residues enables the estimation of drug consumption and drug markets. Short-term and long-term trends of cocaine, MDMA (ecstasy), amphetamine (speed) and methamphetamine (crystal meth), were studied for the city of Amsterdam. MDMA (+41%) and cocaine (+26%) showed significantly higher weekend vs. week consumption, while no differences were observed for the other drugs. The consumption of MDMA, cocaine, amphetamine and methamphetamine significantly increased between 2011 and 2019. Weekly trends emerging from wastewater analyses were supported by qualitative and quantitative data from a recreational drug use monitoring scheme. However, information collected in panel interviews within nightlife networks and surveys among visitors of pubs, clubs and festivals only partially reflected the long term increase in consumption as registered from wastewater analysis. Furthermore, methamphetamine use was not well presented in survey data, panel studies and test service samples, but could be monitored trough wastewater analysis. This illustrates that wastewater analysis can function as an early warning if use and user groups are small or difficult to reach trough other forms of research. All in all, this study illustrates that wastewater-based epidemiology is complementary to research among user groups, and vice versa. These different types of information enable to connect observed trends in total drug consumption to behaviour of users and the social context in which the use takes place as well as validate qualitative signals about (increased) consumption of psychoactive substances. Such a multi angular approach to map the illicit drug situation on local or regional scale can provide valuable information for public health.
MULTIFILE
Background: Drug checking services (DCS) provide information about drug content and purity, alongside personalized feedback, to people who use drugs; however, the demographic and drug use characteristics of DCS clients are rarely reported. This paper describes these characteristics for clients of the Dutch DCS, the Drug Information and Monitoring System (DIMS). Methods: 1,530 participants completed a pen-and-paper questionnaire at one of eight participating DCS in the Netherlands in 2018. Results: The participants were mostly highly educated males in their twenties with no migration background. Experience with drugs prior to coming to the DCS was common. Only 0.7% indicated they had never used any of the twenty drugs studied. 93% of participants reported use of ecstasy or MDMA with an average of 6.3 years since first use. Conclusions: These results indicate that drug checking can be a valuable tool for public health services as it facilitates access to more difficult-to-reach communities who use drugs. It is unlikely that DCS encourage drug initiation, since almost all people who visit the Dutch DCS already report experience with drugs. However, DCS should be aware that their services might not be easily accessible or attractive to all demographic groups.
The last decades have seen an increase in the use of illicit recreational drugs. In this article we take a detailed look at the current state of normalisation of the three most popular illicit recreational drugs among Dutch university students in the Netherlands (MDMA/Ecstasy, cocaine and amphetamine) by zooming in on five established aspects of normalisation and expanding on one of those aspects: social accomodation, by adding a behavioural subcomponent (setting of use). For this purpose, we used quantitative data, obtained from four studies (2016, 2017, 2019 and 2020) among Dutch university students in a prototypical university city in the Netherlands (Groningen). Results show that three aspects of normalisation are clearly observable. The drugs are perceived as highly accessible, the last year prevalence of use is high, and experimenting, especially with MDMA/Ecstasy, is common. Accurate knowledge of the drugs and acceptance of occasional use, account in some measure for social accommodation. However, as students do not talk openly about their drug use with everyone in their environment, one cannot speak of cultural accommodation. Thus, although clear signs of normalisation of illicit recreational drugs, especially MDMA/Ecstasy, are observable among Dutch university students, there is no full-scale normalisation of these drugs.
Genematics aims to help life science researchers and medical specialists to discover, interpret and communicate valuable patterns in biological data. Our software combines the recovery of data from public scientific resources with instant interpretation. It does so in such a way that the expert only needs a few seconds instead of hours or even days to retrieve answers from the available biological data. Use of our software should accelerate the research for new drugs, new treatments and other innovations in health-related research to build a better tomorrow.
Biotherapeutic medicines such as peptides, recombinant proteins, and monoclonal antibodies have successfully entered the market for treating or providing protection against chronic and life-threatening diseases. The number of relevant commercial products is rapidly increasing. Due to degradation in the gastro-intestinal tract, protein-based drugs cannot be taken orally but need to be administered via alternative routes. The parenteral injection is still the most widely applied administration route but therapy compliance of injection-based pharmacotherapies is a concern. Long-acting injectable (LAI) sustained release dosage forms such as microparticles allow less frequent injection to maintain plasma levels within their therapeutic window. Spider Silk Protein and Poly Lactic-co-Glycolic Acid (PLGA) have been attractive candidates to fabricate devices for drug delivery applications. However, conventional microencapsulation processes to manufacture microparticles encounter drawbacks such as protein activity loss, unacceptable residual organic solvents, complex processing, and difficult scale-up. Supercritical fluids (SCF), such as supercritical carbon dioxide (scCO2), have been used to produce protein-loaded microparticles and is advantageous over conventional methods regarding adjustable fluid properties, mild operating conditions, interfacial tensionless, cheap, non-toxicity, easy downstream processing and environment-friendly. Supercritical microfluidics (SCMF) depict the idea to combine strengths of process scale reduction with unique properties of SCF. Concerning the development of long-acting microparticles for biological therapeutics, SCMF processing offers several benefits over conventionally larger-scale systems such as enhanced control on fluid flow and other critical processing parameters such as pressure and temperature, easy modulation of product properties (such as particle size, morphology, and composition), cheaper equipment build-up, and convenient parallelization for high-throughput production. The objective of this project is to develop a mild microfluidic scCO2 based process for the production of long-acting injectable protein-loaded microparticles with, for example, Spider Silk Protein or PLGA as the encapsulating materials, and to evaluate the techno-economic potential of such SCMF technology for practical & industrial production.
Biotherapeutic medicines such as peptides, recombinant proteins, and monoclonal antibodies have successfully entered the market for treating or providing protection against chronic and life-threatening diseases. The number of relevant commercial products is rapidly increasing. Due to degradation in the gastro-intestinal tract, protein-based drugs cannot be taken orally but need to be administered via alternative routes. The parenteral injection is still the most widely applied administration route but therapy compliance of injection-based pharmacotherapies is a concern. Long-acting injectable (LAI) sustained release dosage forms such as microparticles allow less frequent injection to maintain plasma levels within their therapeutic window. Spider Silk Protein and Poly Lactic-co-Glycolic Acid (PLGA) have been attractive candidates to fabricate devices for drug delivery applications. However, conventional microencapsulation processes to manufacture microparticles encounter drawbacks such as protein activity loss, unacceptable residual organic solvents, complex processing, and difficult scale-up. Supercritical fluids (SCF), such as supercritical carbon dioxide (scCO2), have been used to produce protein-loaded microparticles and is advantageous over conventional methods regarding adjustable fluid properties, mild operating conditions, interfacial tensionless, cheap, non-toxicity, easy downstream processing and environment-friendly. Supercritical microfluidics (SCMF) depict the idea to combine strengths of process scale reduction with unique properties of SCF. Concerning the development of long-acting microparticles for biological therapeutics, SCMF processing offers several benefits over conventionally larger-scale systems such as enhanced control on fluid flow and other critical processing parameters such as pressure and temperature, easy modulation of product properties (such as particle size, morphology, and composition), cheaper equipment build-up, and convenient parallelization for high-throughput production. The objective of this project is to develop a mild microfluidic scCO2 based process for the production of long-acting injectable protein-loaded microparticles with, for example, Spider Silk Protein or PLGA as the encapsulating materials, and to evaluate the techno-economic potential of such SCMF technology for practical & industrial production.