Service of SURF
© 2025 SURF
This thesis studies the factors that influence physical distribution structure design. Distribution Structure Design (DSD) concerns the spatial layout of the distribution channel as well as the location(s) of logistics facilities. Despite the frequent treatment of DSD in supply chain handbooks, an empirically validated conceptual framework of factors is still lacking. This thesis studies DSD in multiple industry sectors (Fashion, Consumer Electronics, Online Retail) and proposes a conceptual framework.
MULTIFILE
The design of a spatial distribution structure is of strategic importance for companies, to meet required customer service levels and to keep logistics costs as low as possible. Spatial distribution structure decisions concern distribution channel layout – i.e. the spatial layout of the transport and storage system – as well as distribution centre location(s). This paper examines the importance of seven main factors and 33 sub-factors that determine these decisions. The Best-Worst Method (BWM) was used to identify the factor weights, with pairwise comparison data being collected through a survey. The results indicate that the main factor is logistics costs. Logistics experts and decision makers respectively identify customer demand and service level as second most important factor. Important sub-factors are demand volatility, delivery time and perishability. This is the first study that quantifies the weights of the factors behind spatial distribution structure decisions. The factors and weights facilitate managerial decision-making with regard to spatial distribution structures for companies that ship a broad range of products with different characteristics. Public policy-makers can use the results to support the development of land use plans that provide facilities and services for a mix of industries.
Distribution structures and distribution centre (DC) locations are essential for logistics companies to optimise logistics costs and service levels. This paper reviews Supply Chain Management (SCM), Geography and Economic Geographic literature on distribution structure and DC locations decision-making. Two central decision-making elements are discussed: process steps and decision-making factors. Added value of our paper is 1) A literature review 2) Conclusions on the state of current scientific knowledge in three research streams 3) A research agenda. Reviewing literature shows decision-making factors are renowned, however, importance of factors in each process step is unknown. Results also show literature diverges on which process steps logistics companies take (descriptive) or should optimally take (prescriptive) in distribution structure and DC location decision-making. Thus, more research is needed. Developing a descriptive conceptual model and testing on several industry sectors will be valuable to understand differences on distribution structure and DC location decision-making.
The pipelines are buried structures. They move together with the soil during a seismic event. They are affected from ground motions. The project aims to find out the possible effects of Groningen earthquakes on pipelines of Loppersum and Slochteren.This project is devised for conducting an initial probe on the available data to see the possible actions that can be taken, initially on these two pilot villages, Loppersum and Slochteren, for detecting the potential relationship between the past damages and the seismic activity.Lifeline infrastructure, such as water mains and sewerage systems, covering our urbanised areas like a network, are most of the times, sensitive to seismic actions. This sensitivity can be in the form of extended damage during seismic events, or other collateral damages, such as what happened in Christchurch Earthquakes in 2011 in New Zealand when the sewerage system of the city was filled in with tonnes of sand due to liquefaction.Regular damage detection is one of key solutions for operational purposes. The earthquake mitigation, however, needs large scale risk studies with expected spatial distribution of damages for varying seismic hazard levels.
The integration of renewable energy resources, controllable devices and energy storage into electricity distribution grids requires Decentralized Energy Management to ensure a stable distribution process. This demands the full integration of information and communication technology into the control of distribution grids. Supervisory Control and Data Acquisition (SCADA) is used to communicate measurements and commands between individual components and the control server. In the future this control is especially needed at medium voltage and probably also at the low voltage. This leads to an increased connectivity and thereby makes the system more vulnerable to cyber-attacks. According to the research agenda NCSRA III, the energy domain is becoming a prime target for cyber-attacks, e.g., abusing control protocol vulnerabilities. Detection of such attacks in SCADA networks is challenging when only relying on existing network Intrusion Detection Systems (IDSs). Although these systems were designed specifically for SCADA, they do not necessarily detect malicious control commands sent in legitimate format. However, analyzing each command in the context of the physical system has the potential to reveal certain inconsistencies. We propose to use dedicated intrusion detection mechanisms, which are fundamentally different from existing techniques used in the Internet. Up to now distribution grids are monitored and controlled centrally, whereby measurements are taken at field stations and send to the control room, which then issues commands back to actuators. In future smart grids, communication with and remote control of field stations is required. Attackers, who gain access to the corresponding communication links to substations can intercept and even exchange commands, which would not be detected by central security mechanisms. We argue that centralized SCADA systems should be enhanced by a distributed intrusion-detection approach to meet the new security challenges. Recently, as a first step a process-aware monitoring approach has been proposed as an additional layer that can be applied directly at Remote Terminal Units (RTUs). However, this allows purely local consistency checks. Instead, we propose a distributed and integrated approach for process-aware monitoring, which includes knowledge about the grid topology and measurements from neighboring RTUs to detect malicious incoming commands. The proposed approach requires a near real-time model of the relevant physical process, direct and secure communication between adjacent RTUs, and synchronized sensor measurements in trustable real-time, labeled with accurate global time-stamps. We investigate, to which extend the grid topology can be integrated into the IDS, while maintaining near real-time performance. Based on topology information and efficient solving of power flow equation we aim to detect e.g. non-consistent voltage drops or the occurrence of over/under-voltage and -current. By this, centrally requested switching commands and transformer tap change commands can be checked on consistency and safety based on the current state of the physical system. The developed concepts are not only relevant to increase the security of the distribution grids but are also crucial to deal with future developments like e.g. the safe integration of microgrids in the distribution networks or the operation of decentralized heat or biogas networks.
Climate change has impacted our planet ecosystem(s) in many ways. Among other alterations, the predominance of long(er) drought periods became a point of concern for many countries. A good example is The Netherlands, a country known by its channels and abundant surface water, which has listed “drought effect mitigation” among the different topics in the last version of its “Innovation Agenda” (Kennis en Innovatie Agenda, KIA). There are many challenges to tackle in such scenario, one of them is solutions for small/decentralized communities that suffer from dry-up of surface reservoirs and have no groundwater source available. Such sites are normally far from big cities and coastal zones, which impair the supply via distribution networks. In such cases, Atmospheric Water Generation (AWG) technologies are a plausible solution. These systems have relatively small production rates (few m3 per day), but they can still provide enough volume for cities with up to 100k inhabitants. Despite having real scale systems already installed in different locations worldwide, most systems are between TRL 5 and 6. Thus need further development. SunCET proposes an in-situ evaluation of an AWG system (WaterWin) developed by two different Dutch companies (Solaq and Sustainable Eyes) in the Brazilian semi-arid state of Ceará. The cooperation with NHL Stenden will provide the necessary expertise, analytical and technical support to conduct the tests. The state government of Ceará built an infrastructure to support the realization of in-situ tests, as they want to further accelerate technology implementation in the state. Such structure will make it possible to share costs and decrease total investments for the SMEs. Finally, it is also intended to help establishing partnerships between Dutch SMEs and Brazilian end users, i.e. municipalities of the Ceará state and small agriculture companies in the region.