Service of SURF
© 2025 SURF
DBELA is a Displacement-Based Earthquake Loss Assessment methodology for urban areas which relates the displacement capacity of the building stock to the displacement demand from earthquake scenarios. The building stock is modeled as a random population of building classes with varying geometrical and material properties. The period of vibration of each building in the random population is calculated using a simplified equation based on the height of the building and building type, whilst the displacement capacity at different limit states is predicted using simple equations which are a function of the randomly simulated geometrical and material properties. The displacement capacity of each building is then compared to the displacement demand obtained, from an over-damped displacement spectrum, using its period of vibration; the proportion of buildings which exceed each damage state can thus be estimated. DBELA has been calibrated to the Turkish building stock following the collection of a large database of structural characteristics of buildings from the northern Marmara region. The probabilistic distributions for each of the structural characteristics (e.g. story height, steel properties etc.) have been defined using the aforementioned database. The methodology has then been applied to predict preliminary damage distributions and social losses for the Istanbul Metropolitan Municipality for a Mw 7.5 scenario earthquake.
MULTIFILE
The Ph.D. candidate will investigate the seismic response of connection details frequently used in traditional Dutch construction practice, specifically in the Groningen area. The research will focus on the experimental and numerical definition of the complete load-deflection behaviour of each considered connection; specifically, the tests will aim at identifying stiffness, strength, ductility, and dissipative behaviour of the connections. The experiments will be conducted on scaled or full-scale components that properly resemble the as-built and retrofitted as well connection details. The tests will involve monotonic and cyclic loading protocols to be able to define the load and displacement response of the connection to reversal loads, such as earthquakes, as well as the development of failure mechanisms under such loading cases. Possibly, also dynamic tests will be performed. Numerical models will be created and calibrated versus the experimental findings. Characteristic hysteretic behaviours of the examined connection types will be provided for the use of engineers and researchers.
The structure will be monitored real-time and reasons behind the damages will be found. Proposals for protecting the structure against earthquakes will be made. - Damage scenario of the building, in relation to the induced seismicity effects on structures in the region- Establishment of a real-time structural monitoring toolThe building will be instrumented with accelerometers and displacement crack sensors. Additionally to the monitoring efforts, the structure will also be modelled in FE computer simulations in an effort trying to find out possible future response of the monument to strong earthquakes. The monitoring data will be combined with FE simulations in concluding the response of the structure to recursive induced seismic events.