Service of SURF
© 2025 SURF
When reconstructing a shooting incident with a shotgun, the muzzle-to-target distance can be determined by relating the size of a dispersion pattern found on a crime scene to that of test shots. Ideally, the test shots are performed with the weapon and ammunition that were used in the incident. But sometimes examiners will have to resort to alternatives, such as using cartridges of the same brand and type but with another pellet size. For this reason, the relationship between pellet size and shotgun dispersion patterns was studied with both lead and steel shotgun pellets. Cartridges were loaded with identical cartridge cases, powder charges, and wads but with different pellet sizes, below size B. The cartridges were fired, and the dispersion patterns at 5 m in front of the muzzle were measured and compared. The results provide strong support for the proposition that shotgun dispersion patterns with both lead and steel shot increase with decreasing pellet size if all other relevant parameters are kept equal. The results also provide an indicative measure of the magnitude of the effect. Pattern sizes were approximately 1.7 times larger with #9 than with #0 lead shot and 1.4 times larger with #9 than with #1 steel shot. The differences between consecutive shot sizes were generally smaller. This means that cartridges of equal brand and type but with the next nearest shot number can be used for a muzzle-to-target distance determination, keeping the information of the current study in mind in the final interpretation of the results.
In certain conditions, (part of) an oil spill can disappear from the water surface through a process called natural dispersion. One available oil spill response option is to enhance this process by addition of dispersants (chemical dispersion). An informed decision for such response requires insight in the oil slick size WITH and WITHOUT treatment. This thesis aims to enable such assessment of net effectiveness, by providing a strategy for modelling the dispersion process. A plunging jet test was developed for investigating entrainment and droplet breakup. Using this set up the relevance of oil layer thickness was proven and an algorithm to model droplet sizes of dispersed oil was defined. The findings were applied in a model simulating dispersion and resurfacing as well as the wind-driven differential transport between the floating slick and suspended droplets. The simulation outputs help assess the added value (or not) of dispersant application in reducing the surface oil slick size for different oil types and conditions.
LINK
The main goal of this study is to identify knowledge gaps and uncertainties in Quantitative Risk Assessments (QRA) for CO2 pipelines and to assess to what extent those gaps and uncertainties affect the final outcome of the QRA. The impact of methodological choices and uncertain values for input parameters on the results of QRA’s have been assessed through an extensive literature review and by using commercially available release, dispersion and effect models. It is made apparent that over the full life cycle of a QRA knowledge gaps and uncertainties are present that may have large scale impact on the accuracy of assessing risks of CO2 pipelines. These encompass the invalidated release and dispersion models, the currently used failure rates, choosing the type of release to be modeled and the dose-effect relationships assumed. Also recommendations are presented for the improvement of QRA’s for CO2 pipelines.
MULTIFILE
This project is to investigate Circular Calcium Carbonate (CCC) that is produced by pyrolysis from paper waste in an innovative process developed by the company Alucha Management B.V. (Alucha) located in Arnhem. Although there is a need to use circular materials in rubber formulations it has not yet been proven that the replacement of mined white fillers (e.g. Kaolin, Calcium Carbonate) by CCC in rubber applications is possible without a significant impact on the processing properties and part performance. The scope of this project is to investigate the use of Circular Calcium Carbonate (CCC) in various rubber formulations and articles made thereof.
The Water Framework Directive imposes challenges regarding the environmental risk of plastic pollution. The quantification, qualification, monitoring, and risk assessment of nanoplastics and small microplastic (<20 µm) is crucial. Environmental nano- and micro-plastics (NMPs) are highly diverse, accounting for this diversity poses a big challenge in developing a comprehensive understanding of NMPs detection, quantification, fate, and risks. Two major issues currently limit progress within this field: (a) validation and broadening the current analytical tools (b) uncertainty with respect to NMPs occurrence and behaviour at small scales (< 20 micron). Tracking NMPs in environmental systems is currently limited to micron size plastics due to the size detection limit of the available analytical techniques. There are currently no methods that can detect nanoplastics in real environmental systems. A major bottleneck is the incompatibility between commercially available NMPs and those generated from plastic fragments degradation in the environment. To track nanoplastics in environmental and biological systems, some research groups synthesized metal-doped nanoplastics, often limited to one polymer type and using high concentrations of surfactants, rendering these synthesized nanoplastics to not be representative of nanoplatics found in real environment. NanoManu proposes using Electrohydrodynamic Atomization to generate metal doped NMPs of different polymers types, sizes, and shapes, which will be representative of the real environmental nanoplastics. The synthesized nanoplastics will be used as model particles in environmental studies. The synthesized nanoplastics will be characterized and tested using different analytical methods, e.g., SEM-EDX, TEX, GCpyrMS, FFF, µFTIR and SP-ICP-MS. NanoManu is a first and critical step towards generating a comprehensive state-of-the-art analytical and environmental knowledge on the environmental fate and risks of nanoplastics. This knowledge impacts current risk assessment tools, efficient interventions to limit emissions and adequate regulations related to NMPs.