Service of SURF
© 2025 SURF
This article argues for an updated theoretical framework in fashion studies. It proposes that perspectives emphasizing the social role and the technological nature of dress should be considered complementary, and that their joint application can contribute to new understandings of fashion history. Employing ethnographic methods, this stance is explored through a comparative analysis of the sartorial practices of two groups of women living or working in Amsterdam during the 1950s and the 2010s. A theoretical framework integrating theories of identity (mainly based on the writings of Georg Simmel and Gabriel Tarde) and the philosophy of technology (in this case the device paradigm of Albert Borgmann) allows us to uncover a paradoxical history of fashion in which clothing shifts roles, transforming from “things of imitation” into “devices of differentiation.”
Protein acylation via metabolic acyl-CoA intermediates provides a link between cellular metabolism and protein functionality. A process in which acetyl-CoA and acetylation are fine-tuned is during myogenic differentiation. However, the roles of other protein acylations remain unknown. Protein propionylation could be functionally relevant because propionyl-CoA can be derived from the catabolism of amino acids and fatty acids and was shown to decrease during muscle differentiation. We aimed to explore the potential role of protein propionylation in muscle differentiation, by mimicking a pathophysiological situation with high extracellular propionate which increases propionyl-CoA and protein propionylation, rendering it a model to study increased protein propionylation. Exposure to extracellular propionate, but not acetate, impaired myogenic differentiation in C2C12 cells and propionate exposure impaired myogenic differentiation in primary human muscle cells. Impaired differentiation was accompanied by an increase in histone propionylation as well as histone acetylation. Furthermore, chromatin immunoprecipitation showed increased histone propionylation at specific regulatory myogenic differentiation sites of the Myod gene. Intramuscular propionylcarnitine levels are higher in old compared to young males and females, possibly indicating increased propionyl-CoA levels with age. The findings suggest a role for propionylation and propionyl-CoA in regulation of muscle cell differentiation and ageing, possibly via alterations in histone acylation.
LINK
Vaak zien we dat (sport-) bedrijven hun productaanbod differentiëren: ze bieden verschillende varianten van een product aan die voor verschillende groepen afnemers aantrekkelijk kunnen zijn. Dit noemen we productdifferentiatie. Dit kan gerealiseerd worden door het aanbieden van productvormen van eenzelfde kwaliteit of door productvormen met een verschillend kwaliteitsniveau. Wanneer organisaties in de sportbusiness producten (en diensten) in de markt zetten die zich onderscheiden van concurrenten doordat ethische aspecten een relatief grote rol spelen in het product, de dienst, het personeel of het imago, spreken we van ethische productdiffentiatie in de sport. Veelal zien we dat het om producten gaat met een relatief hoge kwaliteit. Ethische productdifferentiatie is een marketingstrategie die zeer geschikt is voor sportbedrijven die zich bewegen in markten met veel concurrentie. Case: O'Neill.
Electronic Sports (esports) is a form of digital entertainment, referred to as "an organised and competitive approach to playing computer games". Its popularity is growing rapidly as a result of an increased prevalence of online gaming, accessibility to technology and access to elite competition.Esports teams are always looking to improve their performance, but with fast-paced interaction, it can be difficult to establish where and how performance can be improved. While qualitative methods are commonly employed and effective, their widespread use provides little differentiation among competitors and struggles with pinpointing specific issues during fast interactions. This is where recent developments in both wearable sensor technology and machine learning can offer a solution. They enable a deep dive into player reactions and strategies, offering insights that surpass traditional qualitative coaching techniquesBy combining insights from gameplay data, team communication data, physiological measurements, and visual tracking, this project aims to develop comprehensive tools that coaches and players can use to gain insight into the performance of individual players and teams, thereby aiming to improve competitive outcomes. Societal IssueAt a societal level, the project aims to revolutionize esports coaching and performance analysis, providing teams with a multi-faceted view of their gameplay. The success of this project could lead to widespread adoption of similar technologies in other competitive fields. At a scientific level, the project could be the starting point for establishing and maintaining further collaboration within the Dutch esports research domain. It will enhance the contribution from Dutch universities to esports research and foster discussions on optimizing coaching and performance analytics. In addition, the study into capturing and analysing gameplay and player data can help deepen our understanding into the intricacies and complexities of teamwork and team performance in high-paced situations/environments. Collaborating partnersTilburg University, Breda Guardians.
De fotonica industrie groeit snel in de Brainport regio. Multinationals zoals ASML maar ook talrijke MKB bedrijven werken aan complexe optische systemen. Zij concurreren op wereldschaal met high tech Amerikaanse en Aziatische spelers. Innovatie is daarvoor van levensbelang. R&D in de sleuteltechnologieën fotonica en geavanceerde fabricagesystemen levert hiervoor de hoognodige brandstof. Zo ook in dit project, waarbij twee high tech MKB bedrijven met Fontys 3D-metaalprinten op een nieuwe en slimme manier gaan inzetten voor fotonica. Complexe optische systemen bevatten meestal meerdere optische elementen (o.a. lenzen, spiegels, diafragma’s, lichtbronnen, sensoren) die onderling in een lichtweg gerangschikt en onderling afgesteld moeten worden. Hierbij worden z.g. optische mounts gebruikt om de positie van de individuele optische elementen vast te leggen en na afstelling te fixeren. Een dergelijke afstelmethode is vaak lastig (divergerend), tijdrovend en niet stabiel over de tijd (want gebaseerd op wrijvingsfixatie). Dit project onderzoekt als oplossing een geïntegreerd monolithisch 3D geprint montagesysteem voor optische elementen, waarbij gebruik gemaakt wordt van ruimtelijk georiënteerde 3D geprinte monolithische elementen (spelings- en hysteresevrij). Hiermee wordt de insteltijd aanzienlijk gereduceerd (doelstelling: 100% --> 30%). Tevens zal de positioneernauwkeurigheid van de hierin opgenomen optische elementen gegarandeerd zijn. Tenslotte zullen er aanzienlijk minder onderdelen in het ontwerp aanwezig zijn. Als concrete en haalbare demonstrator wordt een 3D geprinte monolithische optical mount voor de lichtweg van de “Arinna” laserinterferometer van IBSPE uit Eindhoven ontwikkeld en getest. 3D geprinte optical mounts zijn nieuw voor dit netwerk, maar Fontys en aangesloten ondernemers hebben de relevante ervaring in 3D metaalprinten en fotonica. Met de aangesloten fotonica netwerken Photon Delta, DSPE en PhotonicsNL kan de opgedane kennis snel opgeschaald worden en kunnen ook andere MKB bedrijven deze innovatieve mounts voor hun supply chains gaan onderzoeken.
Implanting biocompatible materials is nothing new, 3D printing of cells and extracellular matrix is well underway so growing replacement tissues in a lab is within reach. However, certain obstacles remain: How to culture functional tissues with robust and reproducible 3D architecture? Application of support structures can aid, but what if such scaffolds obstruct functionality of the graft while having limited chance of being degraded within the recipient’s body? Bioplastics are polymers of natural origin that can be degraded enzymatically. We want to use bioplastics for production of 3D printed mesh scaffolds that support cell adhesion, proliferation, differentiation, and maturation (Fig. 1). These scaffolds are designed to be temporal and sacrificial: enzymes will be used to remove the scaffold in a tissue friendly manner prior to implantation allowing tailor made, functional and ideally ‘self-only’ grafts.