Service of SURF
© 2025 SURF
Abstract gepubliceerd in Elsevier: Introduction: Recent research has identified the issue of ‘dose creep’ in diagnostic radiography and claims it is due to the introduction of CR and DR technology. More recently radiographers have reported that they do not regularly manipulate exposure factors for different sized patients and rely on pre-set exposures. The aim of the study was to identify any variation in knowledge and radiographic practice across Europe when imaging the chest, abdomen and pelvis using digital imaging. Methods: A random selection of 50% of educational institutes (n ¼ 17) which were affiliated members of the European Federation of Radiographer Societies (EFRS) were contacted via their contact details supplied on the EFRS website. Each of these institutes identified appropriate radiographic staff in their clinical network to complete an online survey via SurveyMonkey. Data was collected on exposures used for 3 common x-ray examinations using CR/DR, range of equipment in use, staff educational training and awareness of DRL. Descriptive statistics were performed with the aid of Excel and SPSS version 21. Results: A response rate of 70% was achieved from the affiliated educational members of EFRS and a rate of 55% from the individual hospitals in 12 countries across Europe. Variation was identified in practice when imaging the chest, abdomen and pelvis using both CR and DR digital systems. There is wide variation in radiographer training/education across countries.
Review: With great interest we have read the paper “Pregnancy Screening before Diagnostic Radiography in Emergency Department; an Educational Review” by A.I. Abushouk et al. (1). We agree with the authors that unnecessary fetal radiation exposure should be avoided and that pregnancy screening can be a means to accomplish this. However, in their paper the authors suggest in several instances that radiological imaging during pregnancy can lead to teratogenic effects. In the Abstract it is stated: “Radiation exposure during pregnancy may have serious teratogenic effects to the fetus. Therefore, checking the pregnancy status before imaging women of child bearing age can protect against these effects.”, and in the Introduction: “Therefore, checking the pregnancy status before imaging women of child bearing age can protect against radiation teratogenic effects.” We strongly disagree with these statements: common radiological imaging will usually not give rise to fetal radiation doses high enough to lead to teratogenesis. The statements in the paper may lead to unnecessary worrying of pregnant women and it may discourage themfrom undergoing medically necessary radiological examinations.
INTRODUCTION: In the Netherlands, hospitals have difficulty in implementing the formal procedure of comparing radiation dose values to Diagnostic Reference Levels (DRLs).METHODS: To support the hospitals, train radiography students, and carry out a nationwide dose survey, diagnostic radiography students performed 125 DRL comparisons for nine different procedures in 29 radiology departments. Students were instructed at three Dutch Universities of Applied Sciences with a radiography programme and supervised by medical physicists from the participating hospitals.RESULTS: After a pilot study in the western part of the country in eight hospitals, this study was enlarged to involve 21 hospitals from all over the Netherlands. The 86 obtained dose comparisons fall below the DRLs in 97% of all cases. This very high compliance may have been enhanced by the voluntary participation of hospitals that are confident about their performance.CONCLUSION: The results indicate that the current DRLs that were not based on a national survey, may need to be updated, sometimes to half their current value. For chest and pelvis examinations the DRLs could be lowered from 12 and 300 μGy·m 2 to the 75-percentile values found in this study of 5,9 and 188 μGy·m 2, respectively.
Fluorescence microscopy is an indispensable technique to resolve structure and specificity in many scientific areas such as diagnostics, health care, materials- and life sciences. With the development of multi-functional instruments now costing hundreds of thousands of Euros, the availability and access to high-tech instrumentation is increasingly limited to larger imaging facilities. Here, we will develop a cost-effective alternative by combining a commercially available solution for high-resolution confocal imaging (the RCM from confocal.nl) with an open-hardware microscopy framework, the miCube, developed in the Laboratory of Biophysics of Wageningen University & Research. In addition, by implementing a recent invention of the applicant for the spectral separation of different emitters, we will improve the multiplexing capabilities of fluorescence microscopy in general and the RCM in particular. Together, our new platform will help to translate expertise and know-how created in an academic environment into a commercially sustainable future supporting the Dutch technology landscape.