Service of SURF
© 2025 SURF
Dealing with and maintaining high-quality standards in the design and construction phases is challenging, especially for on-site construction. Issues like improper implementation of building components and poor communication can widen the gap between design specifications and actual conditions. To prevent this, particularly for energy-efficient buildings, it is vital to develop resilient, sustainable strategies. These should optimize resource use, minimize environmental impact, and enhance livability, contributing to carbon neutrality by 2050 and climate change mitigation. Traditional post-occupancy evaluations, which identify defects after construction, are impractical for addressing energy performance gaps. A new, real-time inspection approach is necessary throughout the construction process. This paper suggests an innovative guideline for prefabricated buildings, emphasizing digital ‘self-instruction’ and ‘self-inspection’. These procedures ensure activities impacting quality adhere to specific instructions, drawings, and 3D models, incorporating the relevant acceptance criteria to verify completion. This methodology, promoting alignment with planned energy-efficient features, is supported by BIM-based software and Augmented Reality (AR) tools, embodying Industry 4.0 principles. BIM (Building Information Modeling) and AR bridge the gap between virtual design and actual construction, improving stakeholder communication and enabling real-time monitoring and adjustments. This integration fosters accuracy and efficiency, which are key for energy-efficient and nearly zero-energy buildings, marking a shift towards a more precise, collaborative, and environmentally sensible construction industry.
There is a lot of attention for the reduction of city logistics' emissions. But also if city logistics' vehicles are zero emission, the vehicles remain present in urban areas. Zero emission vehicles also occupy valuable urban space during unloading on the road and on sidewalks. Despite the spatial impact of city logistics, it is rarely considered in spatial planning. Based on four case studies, we explore possibilities to actively integrate city logistics in spatial planning policies and practices in order to reduce nuisance, but also to enhance efficiency of deliveries. In the end, spatial planning determines the physical urban conditions in which city logistics operations are taking place for many years. From the results we distil a research agenda to bridge the gap between city logistics as a traffic issue and its integration in spatial planning policies.
LINK
The maritime transport industry is facing a series of challenges due to the phasing out of fossil fuels and the challenges from decarbonization. The proposal of proper alternatives is not a straightforward process. While the current generation of ship design software offers results, there is a clear missed potential in new software technologies like machine learning and data science. This leads to the question: how can we use modern computational technologies like data analysis and machine learning to enhance the ship design process, considering the tools from the wider industry and the industry’s readiness to embrace new technologies and solutions? The obbjective of this PD project is to bridge the critical gap between the maritime industry's pressing need for innovative solutions for a more agile Ship Design Process; and the current limitations in software tools and methodologies available via the implementation into Ship Design specific software of the new generation of computational technologies available, as big data science and machine learning.
Possibly, the aviation sector’s decarbonization challenge (see Dutch knowledge key in international climate study for tourism | CELTH) has profound implications for the ability of aviation-de-pendent outbound tour operators to attract capital and with that their ability to maintain or trans-form their current business portfolio (understood here as the current product offers and approximate carbon footprints, business models, and ownership structures present in this economic do-main). Knowledge about these (possible) investment risks and their business and policy implications is lacking. This project therefore addresses this knowledge gap by means of the following research questions.1. What is the current business portfolio of Dutch outbound tour operators?a. To what extend do Dutch outbound tour operators depend on aviation in terms of product offer and turnover?b. What is the relative carbon footprint share of aviation-based products compared to the total outbound product offer and turnover of Dutch outbound tour operators?2. What are investment risks of this business portfolio as indicated by investors?a. How do investors evaluate investment risks in relation to climate change mitigation and de-carbonisation?b. What are investment risks of the business portfolio of Dutch outbound tour operators?c. What are the reflections on and implications of these investment risks from the perspective of policymakers and tour operators?