Service of SURF
© 2025 SURF
The huge number of images shared on the Web makes effective cataloguing methods for efficient storage and retrieval procedures specifically tailored on the end-user needs a very demanding and crucial issue. In this paper, we investigate the applicability of Automatic Image Annotation (AIA) for image tagging with a focus on the needs of database expansion for a news broadcasting company. First, we determine the feasibility of using AIA in such a context with the aim of minimizing an extensive retraining whenever a new tag needs to be incorporated in the tag set population. Then, an image annotation tool integrating a Convolutional Neural Network model (AlexNet) for feature extraction and a K-Nearest-Neighbours classifier for tag assignment to images is introduced and tested. The obtained performances are very promising addressing the proposed approach as valuable to tackle the problem of image tagging in the framework of a broadcasting company, whilst not yet optimal for integration in the business process.
A formal description of a database consists of the description of the relations (tables) of the database together with the constraints that must hold on the database. Furthermore the contents of a database can be retrieved using queries. These constraints and queries for databases can very well be formalized. A formal description of a constraint or a query is necessary to describe the constraint or query unambiguously. In other words, a formal description leads to one and only one meaning of the constraint or query. To describe constraints and queries in a formal way we use predicate logic, set theory and tuple relational calculus. The tuple relational calculus is a calculus based on the use of tuple variables. A tuple variable is a variable that ranges over a named relation (i.e. a set of tuples of a relation). This paper describes the use of the relational calculus for databases. A description of the formal notation is given as well as a mapping of these expressions to SQL.
Patiëntdata uit vragenlijsten, fysieke testen en ‘wearables’ hebben veel potentie om fysiotherapie-behandelingen te personaliseren (zogeheten ‘datagedragen’ zorg) en gedeelde besluitvorming tussen fysiotherapeut en patiënt te faciliteren. Hiermee kan fysiotherapie mogelijk doelmatiger en effectiever worden. Veel fysiotherapeuten en hun patiënten zien echter nauwelijks meerwaarde in het verzamelen van patiëntdata, maar vooral toegenomen administratieve last. In de bestaande landelijke databases krijgen fysiotherapeuten en hun patiënten de door hen zelf verzamelde patiëntdata via een online dashboard weliswaar teruggekoppeld, maar op een weinig betekenisvolle manier doordat het dashboard primair gericht is op wensen van externe partijen (zoals zorgverzekeraars). Door gebruik te maken van technologische innovaties zoals gepersonaliseerde datavisualisaties op basis van geavanceerde data science analyses kunnen patiëntdata betekenisvoller teruggekoppeld en ingezet worden. Wij zetten technologie dus in om ‘datagedragen’, gepersonaliseerde zorg, in dit geval binnen de fysiotherapie, een stap dichterbij te brengen. De kennis opgedaan in de project is tevens relevant voor andere zorgberoepen. In dit KIEM-project worden eerst wensen van eindgebruikers, bestaande succesvolle datavisualisaties en de hiervoor vereiste data science analyses geïnventariseerd (werkpakket 1: inventarisatie). Op basis hiervan worden meerdere prototypes van inzichtelijke datavisualisaties ontwikkeld (bijvoorbeeld visualisatie van patiëntscores in vergelijking met (beoogde) normscores, of van voorspelling van verwacht herstel op basis van data van vergelijkbare eerdere patiënten). Middels focusgroepinterviews met fysiotherapeuten en patiënten worden hieruit de meest kansrijke (maximaal 5) prototypes geselecteerd. Voor deze geselecteerde prototypes worden vervolgens de vereiste data-analyses ontwikkeld die de datavisualisaties op de dashboards van de landelijke databases mogelijk maken (werkpakket 2: prototypes en data-analyses). In kleine pilots worden deze datavisualisaties door eindgebruikers toegepast in de praktijk om te bepalen of ze daadwerkelijk aan hun wensen voldoen (werkpakket 3: pilots). Uit dit 1-jarige project kan een groot vervolgonderzoek ‘ontkiemen’ naar het effect van betekenisvolle datavisualisaties op de uitkomsten van zorg.
Jaarlijks worden in Nederland ongeveer 600.000 mensen ziek door het eten van besmet voedsel. De voedselverwerkende industrie heeft sterke behoefte aan meer grip op het bewaken van de hygiëne in de fabrieken om te voorkomen dat besmette producten in de winkels komen. In het afgeronde RAAK-mkb project “Precision Food Safety” is onderzocht wat de meerwaarde is van de toepassing van Whole Genome Sequencing (WGS) bij het achterhalen van de transmissieroutes van de pathogene bacterie Listeria monocytogenes bij voedselverwerkende bedrijven. Er is een biobank opgebouwd met bijna 600 L. monocytogenes stammen afkomstig van de fabrieksomgeving en producten van vis-, vlees- en groente-verwerkende bedrijven. Deze stammen zijn gesequenced met behulp van Nanopore sequencing. Vervolgens is de verwantschap tussen de stammen bepaald met een in het project ontwikkelde bioinformatica pijplijn. Het project bleek zeer succesvol. In “Advanced Precision in Food Safety ” wordt het onderzoek naar voedselveiligheid verbreed, door L. monocytogenes al aan het begin van de voedselverwerkingsketen (in grondstoffen en ingrediënten) te monitoren. Verder zal de WGS-methodiek worden toegepast op Salmonella enterica en zal de huidige bioinformatica pijplijn worden aangepast om transmissieroutes van dit andere belangrijke voedselpathogeen te achterhalen. Ter verdieping zal het ziekteverwekkende karakter van L. monocytogenes stammen worden bepaald op basis van het serotype en de aanwezigheid van ~60 beschreven virulentiegenen. Daarbij worden gegevens uit verschillende databases, met sequence data van zowel humane als niet humane stammen, met elkaar vergeleken. Zowel in het laboratorium als in de fabrieksomgeving zal het effect van verschillende schoonmaakmiddelen en schoonmaaktechnieken worden onderzocht op het elimineren van L. monocytogenes van oppervlaktes. Tevens wordt onderzocht of shotgun metagenomics analyse kan worden ingezet om voedsel snel en breed op voedselpathogenen te monitoren. Een prototype van een webapplicatie, waarmee bedrijven verkregen resultaten kunnen inzien en aanvullen zal verder worden ontwikkeld en door voedselverwerkende bedrijven worden getest en geïmplementeerd.
Mediaorganisaties gebruiken veel foto’s uit beeldarchieven, bijvoorbeeld om bij nieuwsberichten te plaatsen. Met een tool die foto’s automatisch van tags voorziet willen we zorgen voor grotere consistentie en nauwkeurigheid in zulke beeldarchieven. Hiermee wordt het vinden van passende foto’s eenvoudiger.Doel We onderzoeken of het haalbaar is een tool voor het automatisch taggen van foto’s te ontwikkelen die goed om kan gaan met steeds nieuwe tags. In de context van nieuws en journalistiek moeten namelijk regelmatig nieuwe tags toe worden gevoegd. Resultaten In het project zoeken we antwoorden op onderstaande onderzoeksvragen: Hoe verhoudt de nauwkeurigheid van de tool zich tot die van een traditionele tool voor het taggen van foto’s? Blijft de tool voor automatisch taggen goed presteren als het aantal tags toeneemt? Hoeveel foto’s zijn minimaal nodig om de tool goed te laten presteren voor een nieuwe tag? Looptijd 01 maart 2023 - 01 juli 2023 Aanpak In the eerste fase van het project ontwikkelen we een tool die voldoet aan de gestelde eisen. Zodra de tool ontwikkeld en geïmplementeerd is, volgt de tweede fase. Hierin evalueren we de prestaties van de tool, ook wanneer nieuwe tags worden geïntroduceerd en worden gekoppeld aan foto’s.