Service of SURF
© 2025 SURF
Poster presentation on conference Alice and Eve 2020.
MULTIFILE
This paper presents three qualitative models that were developed for the Stargazing Live! program. This program consists of a mobile planetarium that aims to inspire and motivate learners using real telescope data during the experience. To further consolidate the learning experience three lessons are available that teachers can use as follow up activities with their learners. The lessons implement a pedagogical approach that focuses on learning by creating qualitative models with the aim to have learners learn subject specific concepts as well as generic systems thinking skills. The three lessons form an ordered set with increasing complexity and were developed in close collaboration with domain experts.
Abstract Despite the numerous business benefits of data science, the number of data science models in production is limited. Data science model deployment presents many challenges and many organisations have little model deployment knowledge. This research studied five model deployments in a Dutch government organisation. The study revealed that as a result of model deployment a data science subprocess is added into the target business process, the model itself can be adapted, model maintenance is incorporated in the model development process and a feedback loop is established between the target business process and the model development process. These model deployment effects and the related deployment challenges are different in strategic and operational target business processes. Based on these findings, guidelines are formulated which can form a basis for future principles how to successfully deploy data science models. Organisations can use these guidelines as suggestions to solve their own model deployment challenges.
In the last decade, the automotive industry has seen significant advancements in technology (Advanced Driver Assistance Systems (ADAS) and autonomous vehicles) that presents the opportunity to improve traffic safety, efficiency, and comfort. However, the lack of drivers’ knowledge (such as risks, benefits, capabilities, limitations, and components) and confusion (i.e., multiple systems that have similar but not identical functions with different names) concerning the vehicle technology still prevails and thus, limiting the safety potential. The usual sources (such as the owner’s manual, instructions from a sales representative, online forums, and post-purchase training) do not provide adequate and sustainable knowledge to drivers concerning ADAS. Additionally, existing driving training and examinations focus mainly on unassisted driving and are practically unchanged for 30 years. Therefore, where and how drivers should obtain the necessary skills and knowledge for safely and effectively using ADAS? The proposed KIEM project AMIGO aims to create a training framework for learner drivers by combining classroom, online/virtual, and on-the-road training modules for imparting adequate knowledge and skills (such as risk assessment, handling in safety-critical and take-over transitions, and self-evaluation). AMIGO will also develop an assessment procedure to evaluate the impact of ADAS training on drivers’ skills and knowledge by defining key performance indicators (KPIs) using in-vehicle data, eye-tracking data, and subjective measures. For practical reasons, AMIGO will focus on either lane-keeping assistance (LKA) or adaptive cruise control (ACC) for framework development and testing, depending on the system availability. The insights obtained from this project will serve as a foundation for a subsequent research project, which will expand the AMIGO framework to other ADAS systems (e.g., mandatory ADAS systems in new cars from 2020 onwards) and specific driver target groups, such as the elderly and novice.
Met het groeien van de gemiddelde levensverwachting is ook de uitdaging gegroeid om een ieder zo lang mogelijk een actieve deelnemer van de samenleving te laten zijn. Duurzame zelfstandige mobiliteit is van groot belang voor het functioneren in de samenleving (op werkplek en in thuisomgeving), draagt bij aan het sociaal functioneren en de algemene sociale cohesie. Goede controle over de (dynamische) balans speelt hierbij een grote rol, zijnde de balanshandhaving tijdens het voortbewegen, ook bij gezonde, jonge mensen een continue compromis tussen effectiviteit en veiligheid. Voor ouderen geldt dit nog sterker, daar de gevolgen van een val vele malen ernstiger zijn en ook een grote invloed hebben op de levensverwachting. Mechanismen van handhaving van de dynamische balans in praktische omstandigheden zijn nog grotendeels onbegrepen. Laboratoria staat vaak ver af van praktische condities van de alledaage praktijk. Moderne sensortechnologie opent momenteel een deur naar systematisch onderzoek naar valrisico’s in het dagelijkse leven, echter deze schiet nog te kort in haalbare accuratesse en stabiltiteit over langere metingen. In verschillende projecten wordt momenteel een nieuwe generatie van methoden onderzocht, met als centraal kenmerk hiervan dat bewegingsensoren niet meer als losse onderdelen functioneren, maar in samenhang worden gebruikt. Het kersverse INSTANT project, bijvoorbeeld, onderzoekt hoe huidige bewegingsensoren kunnen worden uitgebreid met een extra sensormodaliteit en ‘meta-datafusion’ algorithmen. Hierdoor kunnen de sensoren elkaars positie waarnemen en naar verwachting een orde meer accuraat meten op een manier die bovendien stabieler is over langere metingen. Aan iets vergelijkbaars wordt gewerkt door collega’s in Torino en Sassari, Italie, zij het met een andere type sensortechnologie. Dit KIEM project onderzoekt in hoeverre beide methoden (en beide onderzoeksclusters) elkaar kunnen versterken door intensief samen te werken. Het plaatsen van een Italiaanse onderzoeker in het INSTANT onderzoekscluster in Enschede gedurende grote delen van een jaar borgt deze samenwerking.
Rotating machinery, such as centrifugal pumps, turbines, bearings, and other critical systems, is the backbone of various industrial processes. Their failures can lead to significant maintenance costs and downtime. To ensure their continuous operation, we propose a fault diagnosis and monitoring framework that leverages the innovative use of acoustic sensors for early fault detection, especially in components less accessible for traditional vibration-based monitoring strategies. The main objective of the proposed project is to develop a fault diagnosis and monitoring framework for rotating machinery, including the fusion of acoustic sensors and physics-based models. By combining real-time monitoring data from acoustic sensors with an understanding of first principles, the framework will enable maintenance practitioners to identify and categorize different failure modes such as wear, fatigue, cavitation, reduced flow, bearing damage, impeller damage, misalignment, etc. In the initial phase, the focus will be on centrifugal pumps using the existing test set-up at the University of Twente. Sorama specializes in acoustic sensors to locate noise sources and will provide acoustic cameras to capture sound patterns related to pump deterioration during various operating conditions. These acoustic signals will then be correlated with the different failure modes and mechanisms that will be described by physics-based models, such as wear, fatigue, cavitation, corrosion, etc. Furthermore, a recently published data set by the Dynamics Based Maintenance research group that includes vibration analysis data and motor current analysis data of various fault scenarios, such as mentioned above, will be used as validation. The anticipated outcome of this project is a versatile framework for a physics-informed acoustic monitoring system. This system is designed to enhance early fault detection significantly, reducing maintenance costs and downtime across a broad spectrum of industrial applications, from centrifugal pumps to turbines, bearings, and beyond.