Service of SURF
© 2025 SURF
In the BBI-JU project LIBBIO, institutions across Europe researched the ideal growing circumstances for the Andean Lupin in Europe. The Andean Lupin can be grown across the continent. Continued research improved the crop’s yield and resistance to disease. Learn more about how this can be achieved in this video.
LINK
Dark homogenous fungal-based layers called biofinishes and vegetable oils are keyingredients of an innovative wood protecting system. The aim of this study was todetermine which of the vegetable oils that have been used to generate biofinishes onwood will provide carbon and energy for the biofinish-inhabiting fungus Aureobasidiummelanogenum, and to determine the effect of the oil type and the amount of oil on thecell yield. Aureobasidium melanogenum was cultivated in shake flasks with differenttypes and amounts of carbon-based nutrients. Oil-related total cell and colony-formingunit growth were demonstrated in suspensions with initially 1% raw linseed,stand linseed, and olive oil. Oil-related cell growth was also demonstrated with rawlinseed oil, using an initial amount of 0.02% and an oil addition during cultivation. Nilered staining showed the accumulation of fatty acids inside cells grown in the presenceof oil. In conclusion, each tested vegetable oil was used as carbon and energysource by A. melanogenum. The results indicated that stand linseed oil provides lesscarbon and energy than olive and raw linseed oil. This research is a fundamental stepin unraveling the effects of vegetable oils on biofinish formation.
MULTIFILE
Lupinus mutabilis is an important source of protein in different Andean countries, and its use in diets, particularly those of less wealthy individuals, has been observed for thousands of years. There is an increasing demand for protein crops suitable for Europe and this species is a potential candidate. Assessment of Lupinus mutabilis genetic material in European conditions started more than 40 years ago, with the characterization of a vast number of accessions from the Andean region. In this review, abiotic and biotic constraints to L. mutabilis cultivation in European soil and climatic conditions are discussed, and cultivation management practices are suggested. The beneficial interaction of L. mutabilis with Bradyrhizobium strains in the soil and various pollinator species is also discussed, and the effect of abiotic stresses on these interactions is highlighted. Prospects of alternative uses of L. mutabilis biomass in Northern Europe and opportunities for breeding strategies are discussed. In conclusion, the different approach to crop modeling for Southern and Northern European climatic conditions is highlighted
The denim industry faces many complex sustainability challenges and has been especially criticized for its polluting and hazardous production practices. Reducing resource use of water, chemicals and energy and changing denim production practices calls for collaboration between various stakeholders, including competing denim brands. There is great benefit in combining denim brands’ resources and knowledge so that commonly defined standards and benchmarks are developed and realized on a scale that matters. Collaboration however, and especially between competitors, is highly complex and prone to fail. This project brings leading denim brands together to collectively take initial steps towards improving the ecological sustainability impact of denim production, particularly by establishing measurements, benchmarks and standards for resource use (e.g. chemicals, water, energy) and creating best practices for effective collaboration. The central research question of our project is: How do denim brands effectively collaborate together to create common, industry standards on resource use and benchmarks for improved ecological sustainability in denim production? To answer this question, we will use a mixed-method, action research approach. The project’s research setting is the Amsterdam Metropolitan Area (MRA), which has a strong denim cluster and is home to many international denim brands and start-ups.
The seaweed aquaculture sector, aimed at cultivation of macroalgal biomass to be converted into commercial applications, can be placed within a sustainable and circular economy framework. This bio-based sector has the potential to aid the European Union meet multiple EU Bioeconomy Strategy, EU Green Deal and Blue Growth Strategy objectives. Seaweeds play a crucial ecological role within the marine environment and provide several ecosystem services, from the take up of excess nutrients from surrounding seawater to oxygen production and potentially carbon sequestration. Sea lettuce, Ulva spp., is a green seaweed, growing wild in the Atlantic Ocean and North Sea. Sea lettuce has a high nutritional value and is a promising source for food, animal feed, cosmetics and more. Sea lettuce, when produced in controlled conditions like aquaculture, can supplement our diet with healthy and safe proteins, fibres and vitamins. However, at this moment, Sea lettuce is hardly exploited as resource because of its unfamiliarity but also lack of knowledge about its growth cycle, its interaction with microbiota and eventually, possible applications. Even, it is unknown which Ulva species are available for aquaculture (algaculture) and how these species can contribute to a sustainable aquaculture biomass production. The AQULVA project aims to investigate which Ulva species are available in the North Sea and Wadden Sea which can be utilised in onshore aquaculture production. Modern genomic, microbiomic and metabolomic profiling techniques alongside ecophysiological production research must reveal suitable Ulva selections with high nutritional value for sustainable onshore biomass production. Selected Ulva spp lines will be used for production of healthy and safe foods, anti-aging cosmetics and added value animal feed supplements for dairy farming. This applied research is in cooperation with a network of SME’s, Research Institutes and Universities of Applied Science and is liaised with EU initiatives like the EU-COST action “SeaWheat”.
Sea Lettuce, Ulva spp. is a versatile and edible green seaweed. Ulva spp is high in protein, carbohydrates and lipids (respectively 7%-33%; 33%-62% and 1%-3% on dry weight base [1, 2]) but variation in these components is high. Ulva has the potential to produce up to 45 tons DM/ha/year but 15 tons DM/ha/year is more realistic.[3, 4] This makes Ulva a possible valuable resource for food and other applications. Sea Lettuce is either harvested wild or cultivated in onshore land based aquaculture systems. Ulva onshore aquaculture is at present implemented only on a few locations in Europe on commercial scale because of limited knowledge about Ulva biology and its optimal cultivation systems but also because of its unfamiliarity to businesses and consumers. The objective of this project is to improve Ulva onshore aquaculture by selecting Ulva seed material, optimizing growth and biomass production by applying ecophysiological strategies for nutrient, temperature, microbiome and light management, by optimizing pond systems eg. attached versus free floating production and eventually protoype product development for feed, food and cosmetics.