Service of SURF
© 2025 SURF
Purpose: This study analyses how weather shocks influence agricultural entrepreneurs’ risk perception and how they manage these risks. It explores what risks agricultural entrepreneurs perceive as important, and how they face climate change and related weather shock risks compared to the multiple risks of the enterprise. Design/methodology: This paper uses qualitative data from several sources: eight semi-structured interviews with experts in agriculture, three focus groups with experts and entrepreneurs, and 32 semi-structured interviews with agricultural entrepreneurs. Findings: not published yet Originality and value: This study contributes to the literature about risk management by small- and medium-sized agricultural enterprises: it studies factors that shape perceptions about weather shocks and about climate change and how these perceptions affect actions to manage related risks, and it identifies factors that motivate agricultural entrepreneurs to adapt to climate change and changing weather shock risks. Practical implications can lay the foundation for concrete actions and policies to improve the resilience and sustainability of the sector, by adjusting risk management strategies, collaboration, knowledge sharing, and climate adaptation policy support.
Cities are becoming increasingly vulnerable to climate change and there is an urgent need to become more resilient. This research involves the development of the City Climate Scan methodology to measure, map, scan and assess different parameters that provide insight into the vulnerability of urban areas and neighborhoods. The research involved the development of a set of measurement tools that can be applied in different urban neighborhoods in a low-cost low-tech approach with teams of stakeholders and practitioners. The City Climate Scan method was tested in different cities around the globe with groups of young professionals and stakeholders in rapid urban appraisals.For the Rotterdam City Climate Scan (September 2017), the following challenges were selected: risk of flooding, heat stress, water quality (micro-pollutants and plastic waste) and air quality. The Rotterdam climate scan is evaluated with their triple helix partners (public, private and academic partners). The conclusion is that the City Climate Scan approach helps policy makers and practitioners to gather valuable data for decision makers in a rapid appraisal at the neighborhood and city level. The results of the City Climate Scan methodprovides insights, creates awareness and brings together stakeholders. The most valuable deliverable is the concrete and tangible results. The participatory approach brings residents and practitioners together and provides insight into local problems, while at the same time the method facilitates the collection of valuable data about the robustness of neighborhoods. As a result of this positive evaluation, the City Climate Scan will be up scaled to a number of cities in Europe and Asia in the upcoming months.
The primary objective of the project is to identify policies for the transformation of the Norwegian tourism sector to become resilient to climate change and carbon risks; to maintain and develop its economic benefits; and to significantly reduce its emissions-intensity per unit of economic output. Collaborative partnersStiftinga Vestlandforsking, Stiftelsen Handelshoyskolen, Stat Sentralbyra, Norges Handelshoyskole, Stiftelsen Nordlandsforskning, Fjord Norge, Hurtigruten, Neroyfjorden Verdsarvpark, Uni Waterloo, Uni Queensland, Desinasjon Voss, Stift Geirangerfjorden Verdsarv, Hogskulen Pa Vestlandet.
DISTENDER will provide integrated strategies by building a methodological framework that guide the integration of climate change(CC) adaptation and mitigation strategies through participatory approaches in ways that respond to the impacts and risks of climatechange (CC), supported by quantitative and qualitative analysis that facilitates the understanding of interactions, synergies and tradeoffs.Holistic approaches to mitigation and adaptation must be tailored to the context-specific situation and this requires a flexibleand participatory planning process to ensure legitimate and salient action, carried out by all important stakeholders. DISTENDER willdevelop a set of multi-driver qualitative and quantitative socio-economic-climate scenarios through a facilitated participatory processthat integrates bottom-up knowledge and locally-relevant drivers with top-down information from the global European SharedSocioeconomic Pathways (SSPs) and downscaled Representative Concentration Pathways (RCPs) from IPCC. A cross-sectorial andmulti-scale impact assessment modelling toolkit will be developed to analyse the complex interactions over multiple sectors,including an economic evaluation framework. The economic impact of the different efforts will be analyse, including damage claimsettlement and how do sectoral activity patterns change under various scenarios considering indirect and cascading effects. It is aninnovative project combining three key concepts: cross-scale, integration/harmonization and robustness checking. DISTENDER willfollow a pragmatic approach applying methodologies and toolkits across a range of European case studies (six core case studies andfive followers) that reflect a cross-section of the challenges posed by CC adaptation and mitigation. The knowledge generated byDISTENDER will be offered by a Decision Support System (DSS) which will include guidelines, manuals, easy-to-use tools andexperiences from the application of the cases studies.
‘Dieren in de dijk’ aims to address the issue of animal burrows in earthen levees, which compromise the integrity of flood protection systems in low-lying areas. Earthen levees attract animals that dig tunnels and cause damages, yet there is limited scientific knowledge on the extent of the problem and effective approaches to mitigate the risk. Recent experimental research has demonstrated the severe impact of animal burrows on levee safety, raising concerns among levee management authorities. The consortium's ambition is to provide levee managers with validated action perspectives for managing animal burrows, transitioning from a reactive to a proactive risk-based management approach. The objectives of the project include improving failure probability estimation in levee sections with animal burrows and enhancing risk mitigation capacity. This involves understanding animal behavior and failure processes, reviewing existing and testing new deterrence, detection, and monitoring approaches, and offering action perspectives for levee managers. Results will be integrated into an open-access wiki-platform for guidance of professionals and in education of the next generation. The project's methodology involves focus groups to review the state-of-the-art and set the scene for subsequent steps, fact-finding fieldwork to develop and evaluate risk reduction measures, modeling failure processes, and processing diverse quantitative and qualitative data. Progress workshops and collaboration with stakeholders will ensure relevant and supported solutions. By addressing the knowledge gaps and providing practical guidance, the project aims to enable levee managers to effectively manage animal burrows in levees, both during routine maintenance and high-water emergencies. With the increasing frequency of high river discharges and storm surges due to climate change, early detection and repair of animal burrows become even more crucial. The project's outcomes will contribute to a long-term vision of proactive risk-based management for levees, safeguarding the Netherlands and Belgium against flood risks.