Cooperation is more likely when individuals can choose their interaction partner. However, partner choice may be detrimental in unequal societies, in which individuals differ in available resources and productivity, and thus in their attractiveness as interaction partners. Here we experimentally examine this conjecture in a repeated public goods game. Individuals (n = 336), participating in groups of eight participants, are assigned a high or low endowment and a high or low productivity factor (the value that their cooperation generates), creating four unique participant types. On each round, individuals are either assigned a partner (assigned partner condition) or paired based on their self-indicated preference for a partner type (partner choice condition). Results show that under partner choice, individuals who were assigned a high endowment and high productivity almost exclusively interact with each other, forcing other individuals into less valuable pairs. Consequently, pre-existing resource differences between individuals increase. These findings show how partner choice in social dilemmas can amplify resource inequality.
MULTIFILE
Cooperation is more likely when individuals can choose their interaction partner. However, partner choice may be detrimental in unequal societies, in which individuals differ in available resources and productivity, and thus in their attractiveness as interaction partners. Here we experimentally examine this conjecture in a repeated public goods game. Individuals (n = 336), participating in groups of eight participants, are assigned a high or low endowment and a high or low productivity factor (the value that their cooperation generates), creating four unique participant types. On each round, individuals are either assigned a partner (assigned partner condition) or paired based on their self-indicated preference for a partner type (partner choice condition). Results show that under partner choice, individuals who were assigned a high endowment and high productivity almost exclusively interact with each other, forcing other individuals into less valuable pairs. Consequently, pre-existing resource differences between individuals increase. These findings show how partner choice in social dilemmas can amplify resource inequality.
MULTIFILE
This paper investigates how management accounting and control systems (operationalized by using Simons’ (1995a) levers of control framework) can be used as devices to support public value creation and as such it contributes to the literature on public value accounting. Using a mixed methods case study approach, including documentary analysis and semi-structured interviews, we found diverging uses of control systems in the Dutch university of applied sciences we investigated. While belief and interactive control systems are used intensively for strategy change and implementation, diagnostic controls were used mainly at the decentral level and seen as devices to make sure that operational and financial boundaries were not crossed. Therefore, belief and interactive control systems lay the foundation for the implementation of a new strategy, in which concepts of public value play a large role, using diagnostic controls to constrain actions at the operational level. We also found that whereas the institution wanted to have interaction with the external stakeholders, in daily practice this takes place only at the phase of strategy formulation, but not in the phase of intermediate strategy evaluation.
MULTIFILE
A fast growing percentage (currently 75% ) of the EU population lives in urban areas, using 70% of available energy resources. In the global competition for talent, growth and investments, quality of city life and the attractiveness of cities as environments for learning, innovation, doing business and job creation, are now the key parameters for success. Therefore cities need to provide solutions to significantly increase their overall energy and resource efficiency through actions addressing the building stock, energy systems, mobility, and air quality.The European Energy Union of 2015 aims to ensure secure, affordable and climate-friendly energy for EU citizens and businesses among others, by bringing new technologies and renewed infrastructure to cut household bills, create jobs and boost growth, for achieving a sustainable, low carbon and environmentally friendly economy, putting Europe at the forefront of renewable energy production and winning the fight against global warming.However, the retail market is not functioning properly. Many household consumers have too little choices of energy suppliers and too little control over their energy costs. An unacceptably high percentage of European households cannot afford to pay their energy bills. Energy infrastructure is ageing and is not adjusted to the increased production from renewables. As a consequence there is still a need to attract investments, with the current market design and national policies not setting the right incentives and providing insufficient predictability for potential investors. With an increasing share of renewable energy sources in the coming decades, the generation of electricity/energy will change drastically from present-day centralized production by gigawatt fossil-fueled plants towards decentralized generation, in cities mostly by local household and district level RES (e.g PV, wind turbines) systems operating in the level of micro-grids. With the intermittent nature of renewable energy, grid stress is a challenge. Therefore there is a need for more flexibility in the energy system. Technology can be of great help in linking resource efficiency and flexibility in energy supply and demand with innovative, inclusive and more efficient services for citizens and businesses. To realize the European targets for further growth of renewable energy in the energy market, and to exploit both on a European and global level the expected technological opportunities in a sustainable manner, city planners, administrators, universities, entrepreneurs, citizens, and all other relevant stakeholders, need to work together and be the key moving wheel of future EU cities development.Our SolutionIn the light of such a transiting environment, the need for strategies that help cities to smartly integrate technological solutions becomes more and more apparent. Given this condition and the fact that cities can act as large-scale demonstrators of integrated solutions, and want to contribute to the socially inclusive energy and mobility transition, IRIS offers an excellent opportunity to demonstrate and replicate the cities’ great potential. For more information see the HKU Smart Citieswebsite or check out the EU-website.
Our country contains a very dense and challenging transport and mobility system. National research agendas and roadmaps of multiple sectors such as HTSM, Logistics and Agri&food, promote vehicle automation as a means to increase transport safety and efficiency. SMEs applying vehicle automation require compliance to application/sector specific standards and legislation. A key aspect is the safety of the automated vehicle within its design domain, to be proven by manufacturers and assessed by authorities. The various standards and procedures show many similarities but also lead to significant differences in application experience and available safety related solutions. For example: Industrial AGVs (Automated Guided Vehicles) have been around for many years, while autonomous road vehicles are only found in limited testing environments and pilots. Companies are confronted with an increasing need to cover multiple application environments, such restricted areas and public roads, leading to complex technical choices and parallel certification/homologation procedures. SafeCLAI addresses this challenge by developing a framework for a generic safety layer in the control of autonomous vehicles that can be re-used in different applications across sectors. This is done by extensive consolidation and application of cross-sectoral knowledge and experience – including analysis of related standards and procedures. The framework promises shorter development times and enables more efficient assessment procedures. SafeCLAI will focus on low-speed applications since they are most wanted and technically best feasible. Nevertheless, higher speed aspects will be considered to allow for future extension. SafeCLAI will practically validate (parts) of the foreseen safety layer and publish the foreseen framework as a baseline for future R&D, allowing coverage of broader design domains. SafeCLAI will disseminate the results in the Dutch arena of autonomous vehicle development and application, and also integrate the project learnings into educational modules.