Service of SURF
© 2025 SURF
With the rise of the number of electric vehicles, the installment of public charging infrastructure is becoming more prominent. In urban areas in which EV users rely on on-street parking facilities, the demand for public charging stations is high. Cities take on the role of implementing public charging infrastructure and are looking for efficient roll-out strategies. Municipalities generally reserve the parking spots next to charging stations to ensure their availability. Underutilization of these charging stations leads to increased parking pressure, especially during peak hours. The city of The Hague has therefore implemented daytime reservation of parking spots next to charging stations. These parking spots are exclusively available between 10:00 and 19:00 for electric vehicles and are accessible for other vehicles beyond these times. This paper uses a large dataset with information on nearly 40.000 charging sessions to analyze the implementation of the abovementioned scheme. An unique natural experiment was created in which charging stations within areas of similar parking pressure did or did not have this scheme implemented. Results show that implemented daytime charging 10-19 can restrict EV owners in using the charging station at times when they need it. An extension of daytime charging to 10:00-22:00 proves to reduce the hurdle for EV drivers as only 3% of charging sessions take place beyond this time. The policy still has the potential to relieve parking pressure. The paper contributes to the knowledge of innovative measures to stimulate the optimized rollout and usage of charging infrastructure.
Underutilised charging stations can be a bottleneck in the swift transition to electric mobility. This study is the first to research cooperative behaviour at public charging stations as a way to address improved usage of public charging stations. It does so by viewing public charging stations as a common-pool resource and explains cooperative behaviour from an evolutionary perspective. Current behaviour is analysed using a survey (313 useful responses) and an analysis of large dataset (2.1 million charging sessions) on the use of public charging infrastructure in Amsterdam, The Netherlands. In such a way it identifies the potential, drivers and possible obstacles that electric vehicle drivers experience when cooperating with other drivers to optimally make use of existing infrastructure. Results show that the intention to show direct reciprocal charging behaviour is high among the respondents, although this could be limited if the battery did not reach full or sufficient state-of-charge at the moment of the request. Intention to show direct reciprocal behaviour is mediated by kin and network effects.
MULTIFILE
This study is the first to systematically and quantitatively explore the factors that determine the length of charging sessions at public charging stations for electric vehicles in urban areas, with particular emphasis placed on the combined parking- and charging-related determinants of connection times. We use a unique and large data set – containing information concerning 3.7 million charging sessions of 84,000 (i.e., 70% of) Dutch EV-users – in which both private users and taxi and car sharing vehicles are included; thus representing a large variation in charging duration behavior. Using multinomial logistic regression techniques, we identify key factors explaining heterogeneity in charging duration behavior across charging stations. We show how these explanatory variables can be used to predict EV-charging behavior in urban areas and we derive preliminary implications for policy-makers and planners who aim to optimize types and size of charging infrastructure.
In the coming decades, a substantial number of electric vehicle (EV) chargers need to be installed. The Dutch Climate Accord, accordingly, urges for preparation of regional-scale spatial programs with focus on transport infrastructure for three major metropolitan regions among them Amsterdam Metropolitan Area (AMA). Spatial allocation of EV chargers could be approached at two different spatial scales. At the metropolitan scale, given the inter-regional flow of cars, the EV chargers of one neighbourhood could serve visitors from other neighbourhoods during days. At the neighbourhood scale, EV chargers need to be allocated as close as possible to electricity substations, and within a walkable distance from the final destination of EV drivers during days and nights, i.e. amenities, jobs, and dwellings. This study aims to bridge the gap in the previous studies, that is dealing with only of the two scales, by conducting a two-phase study on EV infrastructure. At the first phase of the study, the necessary number of new EV chargers in 353 4-digit postcodes of AMA will be calculated. On the basis of the findings of the Phase 1, as a case study, EV chargers will be allocated at the candidate street parking locations in the Amsterdam West borough. The methods of the study are Mixed-integer nonlinear programming, accessibility and street pattern analysis. The study will be conducted on the basis of data of regional scale travel behaviour survey and the location of dwellings, existing chargers, jobs, amenities, and electricity substations.