Predation risk is a major driver of the distribution of prey animals, which typically show strong responses to cues for predator presence. An unresolved question is whether naïve individuals respond to mimicked cues, and whether such cues can be used to deter prey. We investigated whether playback of wolf sounds induces fear responses in naïve ungulates in a human-dominated landscape from which wolves have been eradicated since 1879. We conducted a playback experiment in mixed-coniferous and broadleaved forest that harboured three cervid and one suid species. At 36 locations, we played wolf sounds, sounds of local sheep or no sounds, consecutively, in random order, and recorded visit rate and group size, using camera traps. Visit rates of cervids and wild boar showed a clear initial reduction to playback of both wolf and sheep sounds, but the type of response differed between sound, forest type and species. For naïve wild boar in particular, responses to predator cues depended on forest type. Effects on visit rate disappeared within 21 days. Group sizes in all the species were not affected by the sound treatment. Our findings suggest that the responses of naïve ungulates to wolf sound seem to be species specific, depend on forest type and wear off in time, indicating habituation. Before we can successfully deter ungulates using predator sound, we should further investigate how different forest types affect the perception of naïve ungulates to these sounds, as responses to predator sound may depend on habitat characteristics.
MULTIFILE
Predation risk is a major driver of the distribution of prey animals, which typically show strong responses to cues for predator presence. An unresolved question is whether naïve individuals respond to mimicked cues, and whether such cues can be used to deter prey. We investigated whether playback of wolf sounds induces fear responses in naïve ungulates in a human-dominated landscape from which wolves have been eradicated since 1879. We conducted a playback experiment in mixed-coniferous and broadleaved forest that harboured three cervid and one suid species. At 36 locations, we played wolf sounds, sounds of local sheep or no sounds, consecutively, in random order, and recorded visit rate and group size, using camera traps. Visit rates of cervids and wild boar showed a clear initial reduction to playback of both wolf and sheep sounds, but the type of response differed between sound, forest type and species. For naïve wild boar in particular, responses to predator cues depended on forest type. Effects on visit rate disappeared within 21 days. Group sizes in all the species were not affected by the sound treatment. Our findings suggest that the responses of naïve ungulates to wolf sound seem to be species specific, depend on forest type and wear off in time, indicating habituation. Before we can successfully deter ungulates using predator sound, we should further investigate how different forest types affect the perception of naïve ungulates to these sounds, as responses to predator sound may depend on habitat characteristics.
MULTIFILE
Cities are confronted with more frequent heatwaves of increasing intensity discouraging people from using urban open spaces that are part of their daily lives. Climate proofing cities is an incremental process that should begin where it is needed using the most cost-efficient solutions to mitigate heat stress. However, for this to be achieved the factors that influence the thermal comfort of users, such as the layout of local spaces, their function and the way people use them needs to be identified first. There is currently little evidence available on the effectiveness of heat stress interventions in different types of urban space.The Cool Towns Heat Stress Measurement Protocol provides basic guidance to enable a full Thermal Comfort Assessment (TCA) to be conducted at street-level. Those involved in implementing climate adaptation strategies in urban areas, such as in redevelopments will find practical support to identify places where heat stress may be an issue and suggestions for effective mitigation measures. For others, such as project developers, and spatial designers such as landscape architects and urban planners it provides practical instructions on how to evaluate and provide evidence-based justification for the selection of different cooling interventions for example trees, water features, and shade sails, for climate proofing urban areas.
MULTIFILE