Service of SURF
© 2025 SURF
The main question in this PhD thesis is: How can Business Rules Management be configured and valued in organizations? A BRM problem space framework is proposed, existing of service systems, as a solution to the BRM problems. In total 94 vendor documents and approximately 32 hours of semi-structured interviews were analyzed. This analysis revealed nine individual service systems, in casu elicitation, design, verification, validation, deployment, execution, monitor, audit, and version. In the second part of this dissertation, BRM is positioned in relation to BPM (Business Process Management) by means of a literature study. An extension study was conducted: a qualitative study on a list of business rules formulated by a consulting organization based on the Committee of Sponsoring Organizations of the Treadway Commission risk framework. (from the summary of the Thesis p. 165)
ALE organised an event with Parktheater Eindhoven and LSA-citizens (the Dutch umbrella organisation for active citizens). Five ALE students from the minor Imagineering and business/social innovation took responsibility for concept and actual organisation. On Jan 18th, they were supported by six other group members of the minor as volunteers. An IMEM-team of 5 students gathered materials for a video that can support the follow-up actions of the organisers. The students planned to deliver their final product on February 9th. The theatre will critically assess the result and compare it to the products often realised by students from different schools or even professional ones, like Veldkamp productions. Time will tell whether future opportunities will come up for IMEM. The collaboration of ALE and IMEM students is possible and adding value to the project.More than 180 visitors showed interest in the efforts of 30 national and local citizen initiatives presenting themselves on the market square in the theatre and the diverse speakers during the plenary session. The students created a great atmosphere using the qualities of the physical space and the hospitality of the theatre. Chair of the day, Roland Kleve, kicked off and invited a diverse group of people to the stage: Giel Pastoor, director of the theatre, used the opportunity to share his thoughts on the shifting role of theatre in our dynamic society. Petra Ligtenberg, senior project manager SDG NL https://www.sdgnederland.nl/sdgs/ gave insights to the objectives and progress of the Netherlands. Elly Rijnierse, city maker and entrepreneur from Den Haag, presented her intriguing efforts in her own neighbourhood in the city to create at once both practical and social impacts on SDG 11 (sustainable city; subgoal 3.2). Then the alderman Marcel Oosterveer informed the visitors about Eindhoven’s efforts on SDGs. The plenary ended with very personal interviews of representatives of two impressive citizen initiatives (Parkinson to beat; Stichting Ik Wil). In the two workshop rounds, ALE took responsibility for two workshops. Firstly the workshop: Beyond SDG cherrypicking: using the Economy for the common good’, in cooperation with citizen initiative Ware winst Brabant en Parktheater (including Social innovation-intern Jasper Box), secondly a panel dialogue on local partnerships (SDG 17) for the sustainable city (SDG 11) addressing inclusion (SDG 10) and the livability (SDG 3) with 11 representatives from local/provincial government, companies, third sector and, of course: citizen initiatives.
Plastic products are currently been critically reviewed due to the growing awareness on the related problems, such as the “plastic soup”. EU has introduced a ban for a number of single-use consumer products and fossil-based polymers coming in force in 2021. The list of banned products are expected to be extended, for example for single-use, non-compostable plastics in horticulture and agriculture. Therefore, it is crucial to develop sustainable, biodegradable alternatives. A significant amount of research has been performed on biobased polymers. However, plastics are made from a polymer mixed with other materials, additives, which are essential for the plastics production and performance. Development of biodegradable solutions for these additives is lacking, but is urgently needed. Biocarbon (Biochar), is a high-carbon, fine-grained residue that is produced through pyrolysis processes. This natural product is currently used to produce energy, but the recent research indicate that it has a great potential in enhancing biopolymer properties. The biocarbon-biopolymer composite could provide a much needed fully biodegradable solution. This would be especially interesting in agricultural and horticultural applications, since biocarbon has been found to be effective at retaining water and water-soluble nutrients and to increase micro-organism activity in soil. Biocarbon-biocomposite may also be used for other markets, where biodegradability is essential, including packaging and disposable consumer articles. The BioADD consortium consists of 9 industrial partners, a branch organization and 3 research partners. The partner companies form a complementary team, including biomass providers, pyrolysis technology manufacturers and companies producing products to the relevant markets of horticulture, agriculture and packaging. For each of the companies the successful result from the project will lead to concrete business opportunities. The support of Avans, University of Groningen and Eindhoven University of Technology is essential in developing the know-how and the first product development making the innovation possible.
Buildings are responsible for approximately 40% of energy consumption and 36% of carbon dioxide (CO2) emissions in the EU, and the largest energy consumer in Europe (https://ec.europa.eu/energy). Recent research shows that more than 2/3 of all CO2 is emitted during the building process whereas less than 1/3 is emitted during use. Cement is the source of about 8% of the world's CO2 emissions and innovation to create a distributive change in building practices is urgently needed, according to Chatham House report (Lehne et al 2018). Therefore new sustainable materials must be developed to replace concrete and fossil based building materials. Lightweight biobased biocomposites are good candidates for claddings and many other non-bearing building structures. Biocarbon, also commonly known as Biochar, is a high-carbon, fine-grained solid that is produced through pyrolysis processes and currently mainly used for energy. Recently biocarbon has also gained attention for its potential value with in industrial applications such as composites (Giorcellia et al, 2018; Piri et.al, 2018). Addition of biocarbon in the biocomposites is likely to increase the UV-resistance and fire resistance of the materials and decrease hydrophilic nature of composites. Using biocarbon in polymer composites is also interesting because of its relatively low specific weight that will result to lighter composite materials. In this Building Light project the SMEs Torrgas and NPSP will collaborate with and Avans/CoE BBE in a feasibility study on the use of biocarbon in a NPSP biocomposite. The physicochemical properties and moisture absorption of the composites with biocarbon filler will be compared to the biocomposite obtained with the currently used calcium carbonate filler. These novel biocarbon-biocomposites are anticipated to have higher stability and lighter weight, hence resulting to a new, exciting building materials that will create new business opportunities for both of the SME partners.