Service of SURF
© 2025 SURF
Workers are an important factor in the implementation of a construction project. Applying ergonomic postures for workers in the projects is necessary to minimize the risk of work accidents and the risk of experiencing musculoskeletal disorders (MsDs). The use of lightweight brick for wall construction is relatively new and is in great demand by construction industries in Indonesia. During wall construction, workers do repetitive activities such as bending, kneeling, holding tools, or tilting the body. These activities potentially increase the risk of injury and musculoskeletal disorders. This study aims to assess the work posture of workers on the wall construction using lightweight brick and to analyze the high-risk activities. The wall construction work assessment included five stages of activities, (1) material transfer, (2) practical columns making and installation, (3) lightweight brick adhesive dough-making process, (4) lightweight bricks laying, and (5) lightweight brick plaster. The Rapid Upper Limb Assessment (RULA) method was used to evaluate the working posture. This method was developed to investigate the risk of abnormalities that workers will potentially experience. Based on the RULA employee assessment worksheet, the research results showed that 69% of workers have a high-risk level of work posture and 31% have low-risk levels of work posture. There are three activities with a high-risk level, namely, material transfer, lightweight brick laying, and lightweight brick plaster. At the same time, practical column making and installation work and lightweight brick adhesive dough-making processes are at a low-risk level. According to the RULA risk level, action is required to investigate and immediately improve activities with a high-risk level. If workers continue to work with the same posture, they will be at risk of developing musculoskeletal disorders related to the neck, trunk, and wrists in the near future. Correcting the worker’s posture can be done by improving work position, process, and workplace layout.
Het onderwerp van het onderzoek is het zoeken naar een geschikte contractvorm voor scholenbouw. Hierbij worden twee contractvormen vergelijken: het Living Building Concept (LBC) en de Open Oproep.Het LBC wil de bouw laten werken zoals de gewone consumentenmarkt. De expertise en de oplossingen worden gezocht bij de aanbieder en de vrager heeft de keuze heeft uit verschillende concepten. De Open Oproep gaat uit van een professionele opdrachtgever die vanaf het begin voor een goed lopend proces zorgt.De doelstelling was om het LBC en de Open Oproep te vergelijken aan de hand van vijf criteria: maatschappelijke kosten, faalkosten, flexibiliteit, integrale samenwerking en duurzaamheid. Hierbij werd de vraag gesteld hoe beide vormen scoren op de gestelde criteria. Het LBC is aan de hand van literatuur en interviews onderzocht. De Open Oproep is onderzocht aan de handvan de procedure zoals deze in Nederland gebruikt gaat worden, welke is opgesteld door Stichting Scholenbouwmeester Noord Nederland.De belangrijkste conclusies zijn dat het LBC en de Open Oproep veel van elkaar verschillen. Beide vormen hebben een ander uitgangspunt. Het LBC laat de expertise aan de kant van de aanbieder, en wil door marktwerking en concurrentie er voor zorgen dat de aanbieders zich onderscheiden. De Open Oproep probeert het opdrachtgeverschap te professionaliseren door een Schoolschap met expertise de opdrachtgever bij te laten staan.Een ander verschil is de toepassing van de vormen. Het LBC kan bij verschillende projecten worden toegepast, maar er bestaan nog geen partijen die werken volgens het LBC. De Open Oproep richt zich puur op scholenbouw, waardoor de markt voor deze procedure beperkt is. Daarbij is de Open Oproep nog niettoegepast in Nederland en is met het LBC slechts één pilot-project geweest, waardoor zowel het LBC als de Open Oproep niet getoetst kunnen worden aan de hand van praktijkvoorbeelden.Het antwoord op de hoofdvraag: Op welke manier Is het Living Building Concept, binnen de context van nieuwe ontwikkelingen op het gebied van aanbestedingsvormen en verbeterde afstemming van actoren in hetbouwproces een goed alternatief voor een Open Oproep bij scholenbouw?, is samenvattend: Het LBC zoekt de oplossing aan de kant van de aanbieder en de Open Oproep zoekt de oplossing aan de kant van de vrager. Beide vormen zijn goede oplossingen, maar hierdoor scoren ze wel verschillend op de onderzoekscriteria, waarbij de kanttekening geplaatst moet worden dat beide vormen nieuw, in ontwikkeling en nog niet getoetst zijn.Studentenonderzoek in het kader van het thema Duurzaam bouwen.
The impact of the construction industry on the natural environment is severe, natural areas are changedinto predominantly hard solid surfaces, the energy use in the built environment is high and the industryputs huge claims on materials.
MULTIFILE
The postdoc candidate, Giuliana Scuderi, will strengthen the connection between the research group Biobased Buildings (BB), (collaboration between Avans University of Applied Sciences and HZ University of Applied Sciences (HZ), and the Civil Engineering bachelor programme (CE) of HZ. The proposed research aims at deepening the knowledge about the mechanical properties of biobased materials for the application in the structural and infrastructural sectors. The research is relevant for the professional field, which is looking for safe and sustainable alternatives to traditional building materials (such as lignin asphalt, biobased panels for bridge constructions, etc.). The study of the mechanical behaviour of traditional materials (such as concrete and steel) is already part of the CE curriculum, but the ambition of this postdoc is that also BB principles are applied and visible. Therefore, from the first year of the programme, the postdoc will develop a biobased material science line and will facilitate applied research experiences for students, in collaboration with engineering and architectural companies, material producers and governmental bodies. Consequently, a new generation of environmentally sensitive civil engineers could be trained, as the labour market requires. The subject is broad and relevant for the future of our built environment, with possible connections with other fields of study, such as Architecture, Engineering, Economics and Chemistry. The project is also relevant for the National Science Agenda (NWA), being a crossover between the routes “Materialen – Made in Holland” and “Circulaire economie en grondstoffenefficiëntie”. The final products will be ready-to-use guidelines for the applications of biobased materials, a portfolio of applications and examples, and a new continuous learning line about biobased material science within the CE curriculum. The postdoc will be mentored and supervised by the Lector of the research group and by the study programme coordinator. The personnel policy and job function series of HZ facilitates the development opportunity.
Recent research by the renowned Royal Institution of Chartered Surveyors (RICS) shows that more than 2/3 of all CO2 is emitted during the building process and less than 1/3 during use to heat the building and the tap water. Lightweight, local and biobased materials such as biocomposites to replace concrete and fossil based cladding are in the framework of climate change, a necessity for future building. Using plant fiber in polymer composites is especially interesting for construction since natural fibers exhibit comparative good mechanical properties with small specific weight, which defines the potential for lightweight constructions. The use of renewable resources, will affect the ecosystem favorably and the production costs of construction materials could also decrease. However, one disadvantage of natural fibers in plastics is their hydrophilic properties. In construction the materials need to meet special requirements like the resistance against fluctuating weather conditions (Ticoalu et al., 2010). In contrast to synthetic fibers, the natural ones are more moisture- and UV-radiation-sensitive. That may lead to degradation of these materials and a decreasing in quality of products. (Lopez et al., 2006; Mokhothu und John, 2017) Tanatex and NPSP have approached CoE BBE/Avans to assist in a study where fibres impregnated with the (modified) Tanatex products will be used for reinforcement of thermoset biopolymers. The influence of the different Tanatex products on the moisture absorption of natural/cellulosic fibers and the adhesion on the fibers on main composite matrix will be measured. The effect of Tantex products can optimize the bonding reaction between the resin and the fibers in the (bio) composite and result to improved strength and physico-chemical properties of the biocomposite materials. (word count: 270)
Phosphorus is an essential element for life, whether in the agricultural sector or in the chemical industry to make products such as flame retardants and batteries. Almost all the phosphorus we use are mined from phosphate rocks. Since Europe scarcely has any mine, we therefore depend on imported phosphate, which poses a risk of supply. To that effect, Europe has listed phosphate as one of its main critical raw materials. This creates a need for the search for alternative sources of phosphate such as wastewater, since most of the phosphate we use end up in our wastewater. Additionally, the direct discharge of wastewater with high concentration of phosphorus (typically > 50 ppb phosphorus) creates a range of environmental problems such as eutrophication . In this context, the Dutch start-up company, SusPhos, created a process to produce biobased flame retardants using phosphorus recovered from municipal wastewater. Flame retardants are often used in textiles, furniture, electronics, construction materials, to mention a few. They are important for safety reasons since they can help prevent or spread fires. Currently, almost all the phosphate flame retardants in the market are obtained from phosphate rocks, but SusPhos is changing this paradigm by being the first company to produce phosphate flame retardants from waste. The process developed by SusPhos to upcycle phosphate-rich streams to high-quality flame retardant can be considered to be in the TRL 5. The company seeks to move further to a TRL 7 via building and operating a demo-scale plant in 2021/2022. BioFlame proposes a collaboration between a SME (SusPhos), a ZZP (Willem Schipper Consultancy) and HBO institute group (Water Technology, NHL Stenden) to expand the available expertise and generate the necessary infrastructure to tackle this transition challenge.