Service of SURF
© 2025 SURF
Introduction Around 25% of metastatic breast cancer (mBC) patients develop brain metastases, which vastly affects their overall survival and quality of life. According to the current clinical guidelines, regular magnetic resonance imaging screening is not recommended unless patients have recognized central nervous system-related symptoms. Patient Presentation The patient participated in the EFFECT study, a randomized controlled trial aimed to assess the effects of a 9-month structured, individualized and supervised exercise intervention on quality of life, fatigue and other cancer and treatment-related side effects in patients with mBC. She attended the training sessions regularly and was supervised by the same trainer throughout the exercise program. In month 7 of participation, her exercise trainer detected subtle symptoms (e.g., changes in movement pattern, eye movement or balance), which had not been noticed or reported by the patient herself or her family, and which were unlikely to have been detected by the oncologist or other health care providers at that point since symptoms were exercise related. When suspicion of brain metastases was brought to the attention of the oncologist by the exercise trainer, the response was immediate, and led to early detection and treatment of brain metastases. Conclusion and clinical implications The brain metastases of this patient were detected earlier due to the recognition of subtle symptoms detected by her exercise trainer and the trust and rapid action by the clinician. The implementation of physical exercise programs for cancer patients requires well-trained professionals who know how to recognize possible alterations in patients and also, good communication between trainers and the medical team to enable the necessary actions to be taken.
Background: Traumatic brain injury (TBI) is in the developed countries the most common cause of death and disability in childhood. Aim: The purpose of this study is to estimate the incidence of TBI for children and young people in an urbanised region of the Netherlands and to describe relevant characteristics of this group. Methods: Patients, aged 1 month - 24 years who presented with traumatic brain injury at the Erasmus University Hospital (including the Sophia Children's Hospital) in 2007 and 2008 were included in a retrospective study. Data were collected by means of diagnosis codes and search terms for TBI in patient records. The incidence of TBI in the different referral areas of the hospital for standard, specialised and intensive patient care was estimated. Results: 472 patients met the inclusion criteria. The severity of the Injury was classified as mild in 342 patients, moderate in 50 patients and severe in 80 patients. The total incidence of traumatic brain injury in the referral area of the Erasmus University Hospital was estimated at 113.9 young people per 100.000. The incidence for mild traumatic brain injury was estimated at 104.4 young people, for moderate 6.1 and for severe 3.4 young people per 100.000. Conclusion: The ratio for mild, moderate and severe traumatic brain injury in children and young people was 33.7e1.8e1.In the mild TBI group almost 17% of the patients reported sequelae. The finding that 42% of them had a normal brain CT scan at admission underwrites the necessity of careful follow up of children and young people with mild TBI.
This article examines the possibility of the futuristic assumption that the human mind will converge with artificial intelligence technology to create an enhancement of consciousness. By studying how a correlation between consciousness and the brain is made through visual tools that are used in neuroscience, this article elaborates on how these findings affect research that is done in philosophy on the concept of consciousness. This article proposes a new approach on studying the brain, by examining it as a theoretical object, which gives every research field the possibility to argue over the truth in the images that are created of the brain.
LINK