Service of SURF
© 2025 SURF
The hospitality industry contributes significantly to global climate change through its high resource consumption and emissions due to travel. As public pressure for hotels to develop sustainability initiatives to mitigate their footprint grows, a lack of understanding of green behavior and consumption of hotel guests hinders the adoption of effective programs. Most tourism research thus far has focused on the ecotourism segment, rather than the general population of travelers, and while research in consumer behavior shows that locus of control (LOC) and guilt can influence guests’ environmental behavior, those factors have not been tested with consideration of the subjective norm to measure their interaction and effect on recycling behavior. This study first examines the importance of internal and external LOC on factors for selecting hotel accommodation and the extent of agreement about hotel practices and, second, examines the differences in recycling behavior among guests with internal versus external LOC under levels of positive versus negative subjective norms and feelings of low versus high guilt.
MULTIFILE
According to the critics of conventional sustainability models, particularly within the business context, it is questionable whether the objective of balancing the social, economic and environmental triad is feasible, and whether human equality and prosperity (as well as population growth) can be achieved with the present rate of natural degradation (Rees 2009). The current scale of human economic activity on Earth is already excessive; finding itself in a state of unsustainable ‘overshoot’ where consumption and dissipation of energy and material resources exceed the regenerative and assimilative capacity of supportive ecosystems (Rees 2012). Conceptualizing the current ‘politics of unsustainability’, reflected in mainstream sustainability debates, Blühdorn (2011) explores the paradox of wanting to ‘sustain the unsustainable, noting that the socio-cultural norms underpinning unsustainability support denial of the gravity of our planetary crises. This denial concerns anything from the imminence of mass extinctions to climate change. As Foster (2014) has phrased it: ‘There was a brief window of opportunity when the sustainability agenda might, at least in principle, have averted it’. That agenda, however, has failed. Not might fail, nor even is likely to fail – but has already failed. Yet, instead of acknowledging this failure and moving on from the realization of the catastrophe to the required radical measures, the optimists of sustainable development and ecological modernization continue to celebrate the purported ‘balance' between people, profit and planet. This is an Accepted Manuscript of a book chapter published by Routledge/CRC Press in "A Future Beyond Growth: Towards a Steady State Economy" on 4/14/16 ,available online: https://doi.org/10.4324/9781315667515 LinkedIn: https://www.linkedin.com/in/helenkopnina/
MULTIFILE
With the world facing an ecological crisis, Hindus are challenged to reflect on the ways they impact their environment. The last few decades witnessed a rise of theological reflections on Hindu traditions—especially scriptures and concepts (not least by western scholars)—that advocate environmentally friendly perspectives. This stands in sharp contrast with the multiple examples of how Hindu ritual practices cause harm to the environment. Ganesha Chaturthi is a festival that due to the public element of immersion of Ganesha idols, has led to severe pollution of waterbodies. Because of the attention that has been paid to this lately, the festival now calls for ecofriendly alternatives. This article analyses how recently, environmental awareness is ritualized and materialized in the festival of Ganesha Chaturthi. For this, fieldwork was conducted during Ganesha Chaturthi in Chennai and Mumbai in 2022. The focus of the article lies on the ecofriendly material and ritual innovations of the festival—for instance the variety of Ganeshas made of biodegradable materials—and the dynamics of interaction with (alleged) traditions to validate a Green Hindu identity in general and the development of a Green Ganesha in particular.
It is known that several bacteria in sewage treatment plants can produce attractive quantities of biodegradable polymers within their cell walls (up to 80% of the cell weight). These polymers may consist of polyhydroxyalkanoates (PHA), a bioplastic which exhibits interesting characteristics like excellent biodegradation, low melting point and good environmental footprint. PHA bioplastics or PHBV are still quite expensive because cumbersome downstream processing steps of the PHAcontaining bacteria are needed before PHA can be applied in products. In this proposal, the consortium investigates the possibilities for eliminating these expensive and environmentally intensive purification steps, and as a result contribute to speeding up the up-take of PHA production of residual streams by the market. The objective of the project is to investigate the possibilities of direct extrusion of PHAcontaining bacteria and the application opportunities of the extruded PHA. The consortium of experienced partners (Paques Biomaterials, MAAN Group, Ecoras and CoEBBE) will investigate and test the extrusion of different types of PHA-containing biomass, and analyse the products on composition, appearance and mechanical properties. Moreover, the direct extrusion process will be evaluated and compared with conventional PHA extraction and subsequent extrusion. The expected result will be a proof of principle and provide an operational window for the application of direct extrusion with PHA-containing biomass produced using waste streams, either used as such or in blends with purified PHA. Both the opportunities of the direct extrusion process itself as well as the application opportunities of the extruded PHA will be mapped. If the new process leads to a cheaper, more environmentally friendly produced and applicable PHA, the proof of principle developed by the consortium could be the first step in a larger scale development that could help speeding up the implementation of the technology for PHA production from residual streams in the market.