Service of SURF
© 2025 SURF
Abstract: Combined lifestyle interventions (CLI) are focused on guiding clients with weight-related health risks into a healthy lifestyle. CLIs are most often delivered through face-to-face sessions with limited use of eHealth technologies. To integrate eHealth into existing CLIs, it is important to identify how behavior change techniques are being used by health professionals in the online and offline treatment of overweight clients. Therefore, we conducted online semi-structured interviews with providers of online and offline lifestyle interventions. Data were analyzed using an inductive thematic approach. Thirty-eight professionals with (n = 23) and without (n = 15) eHealth experience were interviewed. Professionals indicate that goal setting and action planning, providing feedback and monitoring, facilitating social support, and shaping knowledge are of high value to improve physical activity and eating behaviors. These findings suggest that it may be beneficial to use monitoring devices combined with video consultations to provide just-in-time feedback based on the client’s actual performance. In addition, it can be useful to incorporate specific social support functions allowing CLI clients to interact with each other. Lastly, our results indicate that online modules can be used to enhance knowledge about health consequences of unhealthy behavior in clients with weight-related health risks.
Behavior change is a topic that is of great interest to many people. People can use apps to exercise more, eat healthier, or learn a new skill, but and digital interventions and games are also used by policy makers and companies to create a safe environment for the general public or to increase sales. Given this interest in behavior change, it is not surprising that this topic has seen a lot of interest from the scientific community. This has resulted in a wide range of theories and techniques to bring about behavior change. However, maintaining behavior change is rarely addressed, and as a result poorly understood. In this paper, we take a first step in the design of digital interventions for long-term behavior change by placing a range of behavior change techniques on a long-term behavior change timeline.
Introduction Physical activity levels of children with disabilities are low, as these children and their parents face a wide variety of both personal and environmental barriers. Behavior change techniques support pediatric physical therapists to address these barriers together with parents and children. We developed the What Moves You?! intervention Toolkit (WMY Toolkit) filled with behavioral change tools for use in pediatric physical therapy practice. Objective To evaluate the feasibility of using the WMY Toolkit in daily pediatric physical therapy practice. Methods We conducted a feasibility study with a qualitative approach using semi-structured interviews with pediatric physical therapists (n = 11). After one day of training, the pediatric physical therapists used the WMY Toolkit for a period of 9 weeks, when facilitating physical activity in children with disabilities. We analyzed the transcripts using an inductive thematic analysis followed by a deductive analysis using a feasibility framework. Results For acceptability, pediatric physical therapists found that the toolkit facilitated conversation about physical activity in a creative and playful manner. The working mechanisms identified were in line with the intended working mechanisms during development of the WMY Toolkit, such as focusing on problem solving, self-efficacy and independence. For demand, the pediatric physical therapists mentioned that they were able to use the WMY Toolkit in children with and without disabilities with a broad range of physical activity goals. For implementation, education is important as pediatric physical therapists expressed the need to have sufficient knowledge and to feel confident using the toolkit. For practicality, pediatric physical therapists were positive about the ease of which tools could be adapted for individual children. Some of the design and materials of the toolkit needed attention due to fragility and hygiene. Conclusion The WMY Toolkit is a promising and innovative way to integrate behavior change techniques into pediatric physical therapy practice.
LINK
Currently, many novel innovative materials and manufacturing methods are developed in order to help businesses for improving their performance, developing new products, and also implement more sustainability into their current processes. For this purpose, additive manufacturing (AM) technology has been very successful in the fabrication of complex shape products, that cannot be manufactured by conventional approaches, and also using novel high-performance materials with more sustainable aspects. The application of bioplastics and biopolymers is growing fast in the 3D printing industry. Since they are good alternatives to petrochemical products that have negative impacts on environments, therefore, many research studies have been exploring and developing new biopolymers and 3D printing techniques for the fabrication of fully biobased products. In particular, 3D printing of smart biopolymers has attracted much attention due to the specific functionalities of the fabricated products. They have a unique ability to recover their original shape from a significant plastic deformation when a particular stimulus, like temperature, is applied. Therefore, the application of smart biopolymers in the 3D printing process gives an additional dimension (time) to this technology, called four-dimensional (4D) printing, and it highlights the promise for further development of 4D printing in the design and fabrication of smart structures and products. This performance in combination with specific complex designs, such as sandwich structures, allows the production of for example impact-resistant, stress-absorber panels, lightweight products for sporting goods, automotive, or many other applications. In this study, an experimental approach will be applied to fabricate a suitable biopolymer with a shape memory behavior and also investigate the impact of design and operational parameters on the functionality of 4D printed sandwich structures, especially, stress absorption rate and shape recovery behavior.
This proposal aims to explore a radically different path towards a more sustainable fashion future through technology. Most research on fashion and technology focuses on high tech innovation and, as a result, overlooks knowledge that is already available and has been used, tested and improved for centuries. The proposed research project, however, looks backward to move forward. It aims to investigate ‘the blindingly obvious’ and asks the question how historical technologies could be used to solve contemporary environmental issues in fashion. It thus argues that technology from the past could inspire both designers and technologists to come up with new and exciting solutions to make the future of fashion more sustainable. The current fast fashion system has changed the relationship consumers have with their clothing. Clothing has become a throwaway object and this has severe environmental implications. This research project aims to find a solution by exploring historical technologies - such as folding, mending and reassembling-, because in the past a ‘sustainable’ attitude towards fashion was the norm simply because cloth and garments were expensive. It wants to examine what happens when consumers, fashion designers and technologists are confronted with these techniques. What would, for example, materialize when an aeronautical engineer takes the technique of folding as a starting point and aims to create clothes that can grow with babies and toddlers? The answer is the signature suit of the brand Petit Pli: a special folding technique allows their signature suit to grow with children from 3 months to 3 years. Much like the age-old folding techniques applied in traditional Dutch dress, which allowed the size women’s jackets to be altered, by simply adjusting the pleats. Similarly, this project aims to investigate how high tech solutions, can be initiated through historical techniques.
Lack of physical activity in urban contexts is an increasing health risk in The Netherlands and Brazil. Exercise applications (apps) are seen as potential ways of increasing physical activity. However, physical activity apps in app stores commonly lack a scientific base. Consequently, it remains unknown what specific content messages should contain and how messages can be personalized to the individual. Moreover, it is unknown how their effects depend on the physical urban environment in which people live and on personal characteristics and attitudes. The current project aims to get insight in how mobile personalized technology can motivate urban residents to become physically active. More specifically, we aim to gain insight into the effectiveness of elements within an exercise app (motivational feedback, goal setting, individualized messages, gaming elements (gamification) for making people more physically active, and how the effectiveness depends on characteristics of the individual and the urban setting. This results in a flexible exercise app for inactive citizens based on theories in data mining, machine learning, exercise psychology, behavioral change and gamification. The sensors on the mobile phone, together with sensors (beacons) in public spaces, combined with sociodemographic and land use information will generate a massive amount of data. The project involves analysis in two ways. First, a unique feature of our project is that we apply machine learning/data mining techniques to optimize the app specification for each individual in a dynamic and iterative research design (Sequential Multiple Assignment Randomised Trial (SMART)), by testing the effectiveness of specific messages given personal and urban characteristics. Second, the implementation of the app in Sao Paolo and Amsterdam will provide us with (big) data on use of functionalities, physical activity, motivation etc. allowing us to investigate in detail the effects of personalized technology on lifestyle in different geographical and cultural contexts.