Service of SURF
© 2025 SURF
In dit document worden de mogelijkheden voor het hernieuwd in gebruik nemen van de spoorlijn tussen Assen en Stadskanaal onderzocht. Hierbij wordt voortgebouwd op het project Flying Carpet waarbij een mogelijke verbinding door middel van autonome voertuigen voor vliegveld Eelde is onderzocht. De volgende aspecten zijn onderzocht: -De route van de voormalige spoorlijn, het aantal kruisingen en de geschiktheid voor autonome voertuigen -De route, frequentie en exploitatiekosten van de huidige openbaar vervoer (OV) verbindingen waarvoor autonome voertuigen een alternatief kunnen bieden -Een grove schatting van de infrastructuurkosten
ICT in intelligente voertuigen levert innovatieve systemen op. Deze innovatieve systemen richten zich op maatschappelijke knelpunten (verkeersveiligheid, milieubelasting en congestie) en consumenten waarde. Recent wordt meer nadruk gelegd op maatschappelijke knelpunten. Vijf (5) a tien (10) jaar geleden werd de nadruk gelegd op het creëren van consumenten waarde. Deze innovatieve systemen moeten wel geaccepteerd worden door de eindgebruikers. Er is nog maar beperkt onderzoek gedaan naar acceptatie van veiligheidssystemen in intelligente voertuigen. Uit literatuuronderzoek komt naar voren dat verschillende vormen van acceptatie gehanteerd worden. Tevens blijkt dat veel onderzoekers spreken over acceptatie maar de acceptatie niet (kunnen) meten. Om inzicht te krijgen in het gedrag en beleving van bestuurders wordt in dit onderzoek voorgesteld om de evolutie van de cruise control (CC) naar adaptive cruise control (ACC) en naar cooperative adaptive cruise control (C-ACC) te gebruiken om acceptatie te voorspellen en te beoordelen. Er zijn bijzonder veel acceptatiemodellen en theorieën. Deze worden in de praktijk veelvuldig gebruikt binnen de Informatie en Communicatie Technologie (ICT). In deze paper wordt een route uitgezet voor het opzetten van een onderzoek waarbij gebruik gemaakt wordt van het UTAUT-acceptatiemodel. Dit onderzoek moet uitwijzen welke criteria de acceptatie beïnvloeden.
In de automotive sector vindt veel onderzoek en ontwikkeling plaats op het gebied van autonome voertuigtechnologie. Dit resulteert in rijke open source software oplossingen voor besturing van robotvoertuigen. HAN heeft met haar Streetdrone voertuig reeds goede praktijkervaring met dergelijke software. Deze oplossingen richten zich op een Operational Design Domain dat uitgaat van de publieke verkeersinfrastructuur met daarbij de weggebruikers rondom het robotvoertuig. In de sectoren agrifood en smart industry is een groeiende behoefte aan automatisering van mobiele machinerie, versterkt door de actuele coronacrisis. Veel functionaliteit van bovengenoemde automotive software is inzetbaar voor mobiele robotica in deze sectoren. De toepassingen zijn enerzijds minder veeleisend - denk aan de meer gestructureerde omgeving, lagere snelheden en minder of geen ‘overige weggebruikers’ – en anderzijds heel specifiek als het gaat over routeplanning en (indoor) lokalisatie. Vanwege dit specifiek karakter is de bestaande software niet direct inzetbaar in deze sectoren. Het MKB in deze sectoren ervaart daarom een grote uitdaging om dergelijke complexe autonome functionaliteit beschikbaar te maken, zonder dat men kan voorbouwen een open, sectorspecifieke softwareoplossing. In Automotion willen de aangesloten partners vanuit bestaande kennis en ervaring tot een eerste integratie en demonstratie komen van een beschikbare automotive open source softwarebibliotheek, aangepast en specifiek ingezet op rijdende robots voor agrifood en smart industry, met focus ‘pickup and delivery’ scenario’s. Hierbij worden de aanpassingen - nieuwe en herschreven ‘boeken’ in de ‘bibliotheek’ - weer in open source gepubliceerd ter versterking van het MKB en het onderwijs. Parallel hieraan willen de partners ontdekken welke praktijkvragen uit dit proces voortvloeien en welke onderliggende kennislacunes in de toekomst moeten worden ingevuld. Via open workshops met uitnodigingen in diverse netwerken worden vele partijen uitgenodigd om gezamenlijk aan de hand van de opgedane ervaringen van gedachten te wisselen over actuele kennisvragen en mogelijke gezamenlijke toekomstige beantwoording daarvan.
Real-Time Cyber-Physical Systems (RT-CPS) zijn onmisbaar in onze samenleving, van medische apparatuur tot autonome voertuigen. De betrouwbaarheid en robuustheid van deze systemen zijn echter cruciaal, fouten kunnen immers grote gevolgen hebben. Dit project beoogt de betrouwbaarheid van RT-CPS te vergroten door middel van een modulaire hardware-architectuur en geavanceerde validatie- en verificatiemethoden (V&V). In samenwerking met praktijkpartners, waaronder het Wilhelmina Kinderziekenhuis, wordt een proof-of-concept demonstrator ontwikkeld in een praktijkgerichte casus. De modulaire hardware-architectuur maakt RT-CPS flexibeler, toekomstbestendig en breed toepasbaar. De geavanceerde V&V-methoden borgen de betrouwbaarheid van de systemen en helpen MKB-bedrijven bij de ontwikkeling van hun eigen RT-CPS-applicaties. Naast de directe voordelen voor de betrokken partners, draagt dit project bij aan een bredere maatschappelijke impact. De verhoogde betrouwbaarheid van RT-CPS kan leiden tot verbeterde veiligheid en efficiëntie in diverse sectoren. Een krachtige samenwerking tussen kennisinstituten, praktijkpartners en het MKB is de sleutel tot succes. Dit project bundelt expertise en praktijkkennis om Nederland een leidende positie te laten innemen op het gebied van betrouwbare RT-CPS. In dit 1-jarig verkennend project zal de Hogeschool van Arnhem en Nijmegen samenwerken met Gemini Embedded Technology, Wilhelmina Kinderziekenhuis, het grootbedrijf Capgemini en de Universiteit Utrecht.
“KITT, activate super pursuit mode!” Actiefilms zijn kenmerkend vanwege de hoeveelheid stunts die erin voorkomen. Auto’s die crashen of elkaar net missen ontbreken hierin niet. Momenteel worden de stunts nog gedaan door getrainde stuntprofessionals wat de nodige risico’s met zich meebrengt. Naast de veiligheidsrisico’s spelen inschattingsfouten en menselijke communicatie een grote rol. Daarom is vanuit het mkb actief in de filmindustrie de vraag ontstaan hoe (gevaarlijke) stunts met voertuigen & beweegbare objecten veiliger, accurater en nauwkeuriger uitgevoerd kunnen worden. In deze KIEM worden de mogelijkheden van technologische toepassingen vanuit de Mobiliteit / Automotive Branche, zoals teleoperatie (het op afstand besturen van een voertuig) en autonome applicaties voor het mkb actief in de filmindustrie onderzocht. De vraag die centraal staat luidt daarom: “Wat is de potentie van technologieën als teleoperatie en autonomie binnen de Nederlandse Filmindustrie voor het uitvoeren van gevaarlijke en nauwkeurige voertuigstunts?” De vraag wordt beantwoord door zowel op schaal als op 1:1 voertuigen teleoperatie & autonome applicaties te ontwikkelen voor een specifieke stunt. Door te werken aan 1 scenario, te weten het net missen van twee voertuigen die op een kruispunt afrijden, bouwen we kennis op over de geschiktheid van teleoperatie en autonomie voor het mkb in de stuntindustrie. De resultaten van deze KIEM zullen worden vastgelegd en gepubliceerd en kunnen de basis vormen voor vervolg onderzoeken zoals een RAAK-mkb onderzoek.