Service of SURF
© 2025 SURF
De zoekopdracht ‘bewegend leren’ levert in Google 400.000 hits op. De zoekopdracht dynamische schooldag’ laat 29.000 hits zien. Dat is veel voor begrippen die we pas zeven jaar kennen. Op de Nederlandse Onderwijs Tentoonstelling (NOT) 2023 waren meer dan 100 bedrijven aanwezig die aangaven iets te doen met bewegend leren. Hoe verhouden de concepten dynamische schooldag en bewegend leren zich tot elkaar? Hoe ontwikkelen we kwaliteitsbesef voor deze concepten? Want nieuw of hip is niet automatisch zinnig of effectief.
MULTIFILE
Op bovenschools niveau hebben leerkrachten binnen een scholenvereniging voor primair onderwijs, een jaar lang een kennisgemeenschap gevormd, rondom het implementeren van handelingsgericht werken. De kennisspiraal van Nonaka en Takeuchi (1995), was het uitgangspunt, voor deze vorm van gezamenlijk leren. Middels het open interview is er onderzoek gedaan naar de aspecten die leerkrachten aangeven als zijnde voorwaardelijk om het gezamenlijk leren binnen een kennisgemeenschap als zinvol te ervaren. Uit de voorlopige analyse blijkt, dat gezamenlijk leren niet automatisch zorgt voor een meer betrokken leerkracht en beter overdraagbare kennis.
Massafabricage in de (MKB) maakindustrie is aan het veranderen in flexibele fabricage en assemblage van kleine series, klantspecifieke onderdelen en eindproducten. Hiervoor zijn nieuwe systemen voor het MKB nodig, waarin robots en mensen samen kunnen werken en die zich snel kunnen aanpassen aan nieuwe productieomstandigheden met lage opstartkosten. De ambitie van het project ?(G)een Moer Aan!? is om het herconfigureren van een robotsysteem voor een nieuwe taak in een productieomgeving net zo eenvoudig en snel te maken als het gebruik van een smartphone. Zo?n benadering biedt kansen om de skills van de operator te benutten. De operator kent immers zijn processen en de robot wordt zijn hulpje. Op vraag van betrokken mkb partners is de focus gelegd op een repeterende productiehandeling die in veel sectoren voorkomt en die relatief veel arbeidstijd kost: het indraaien van moeren en bouten in een object. De centrale onderzoeksvraag van het project luidt: Hoe kan een operator een robot eenvoudig, snel en veilig inleren om assemblage handelingen te verrichten voor het snel en robuust verbinden van bouten, moeren en ringen met objecten? Resultaat van dit praktijkgerichte onderzoeksproject is een algemeen bruikbare en gevalideerde ontwerpmethodiek voor de opzet van een gebruiksvriendelijke user interface van een boutmontagerobot op de werkvloer. Door slim gebruik van geïntegreerde inzet van CAD productinformatie, vision technologie en compliant (meegaand) gripping en placing wordt de robot zo veel als mogelijk vooraf automatisch geconfigureerd. Het projectconsortium dat het onderzoek gaat uitvoeren bestaat uit: " 13 bedrijven (12 mkb) actief als toeleverancier, system integrator of gebruiker op het terrein van industriële robotica (Yaskawa, ABB, Smart Robotics, Hupico, Festo, CSi, Demcon, Heemskerk Innovate, WWA, Van Schijndel Metaal, Van Beek, Tegema en Zest Innovate); " Hogescholen Fontys (penvoerder), Avans, Utrecht en NHL; " Kennisinstellingen TNO en DIFFER; " Coöperaties Brainport Industries, FEDA en Koninklijke Metaalunie; " De gemeente Eindhoven is betrokken als partner in de klankbordgroep. De gemeente ondersteunt het belang van dit project voor behoud en verbetering van arbeidsplaatsen in de maakindustrie. Er zullen circa 20 (docent)onderzoekers van de hogescholen en ongeveer 80 studenten betrokken worden bij dit project, die in de vorm van stages en afstudeeronderzoeken werken aan interessante vraagstukken direct afkomstig uit de beroepspraktijk. Naast genoemde meerwaarde voor het bedrijfsleven beoogt het project een verdere verankering van kennis en kunde in onderwijs en lectoraten en een vergroting van de kwaliteit van docenten en afstudeerders.
Aanleiding Nieuwsuitgeverijen bevinden zich in zwaar weer. Economische malaise en toegenomen concurrentie in het pluriforme medialandschap dwingen uitgeverijen om enerzijds kosten te besparen en tegelijkertijd te investeren in innovatie. De verdere automatisering van de nieuwsredactie vormt hierbij een uitdaging. Buiten de branche ontstaan technieken die uitgeverijen hierbij zouden kunnen gebruiken. Deze zijn nog niet 'vertaald' naar gebruiksvriendelijke systemen voor redactieprocessen. De deelnemers aan het project formuleren voor dit braakliggend terrein een praktijkgericht onderzoek. Doelstelling Dit onderzoek wil antwoord geven op de vraag: Hoe kunnen bewezen en nieuw te ontwikkelen technieken uit het domein van 'natural language processing' een bijdrage leveren aan de automatisering van een nieuwsredactie en het journalistieke product? 'Natural language processing' - het automatisch genereren van taal - is het onderwerp van het onderzoek. In het werkveld staat deze ontwikkeling bekend als 'automated journalism' of 'robotjournalistiek'. Het onderzoek richt zich enerzijds op ontwikkeling van algoritmes ('robots') en anderzijds op de impact van deze technologische ontwikkelingen op het nieuwsveld. De impact wordt onderzocht uit zowel het perspectief van de journalist als de nieuwsconsument. De projectdeelnemers ontwikkelen binnen dit onderzoek twee prototypes die samen het automated-journalismsysteem vormen. Dit systeem gaat tijdens en na het project gebruikt worden door onderzoekers, journalisten, docenten en studenten. Beoogde resultaten Het concrete resultaat van het project is een prototype van een geautomatiseerd redactiesysteem. Verder levert het project inzicht op in de verankering van dit soort systemen binnen een nieuwsredactie. Het onderzoek biedt een nieuw perspectief op de manier waarop de nieuwsconsument de ontwikkeling van 'automated journalism' in Nederland waardeert. Het projectteam deelt de onderzoekresultaten door middel van presentaties voor de uitgeverijbranche, presentaties op wetenschappelijke conferenties, publicaties in (vak)tijdschriften, reflectiebijeenkomsten met collega-opleidingen en een samenvattende white paper.
COMBINE staat voor: COmmunity driven Model Based INtelligent systems Engineering. Voorgaande RAAK-mkb projecten Fast&Curious en SMARTcode resulteerden een community van bedrijven en kennisinstellingen rondom HAN tools voor modelgebaseerde ontwikkeling van regelsystemen. De aanvankelijke focus lag hierbij op de prototype fase. Intussen is de focus verschoven naar serieproductie. Er is veel waardering voor de deling van preconcurrentiële kennis en ervaring in de community en de marktgedreven ontwikkeling van de tools, aangestuurd door de community. Diverse vakbladen deden hiervan verslag. De HAN tools richten zich tot op heden op het modelleren van regelalgoritmes. Nu de voordelen van deze technologie door de MKB partners worden herkend en ingezet, ontstaat de wens om vergelijkbare ondersteuning te introduceren voor het modelleren van het te regelen systeem. Een dergelijke aanvulling op de tools completeert de ondersteuning voor een volledige, modelgebaseerde workflow. Dit resulteert in een centrale MKB vraag naar de benodigde kennis en de tools om systeemmodellen snel, goedkoop en met de vereiste kwaliteit te kunnen realiseren en vervolgens optimaal te integreren in het ontwikkelproces. Naast de gewenste uitbreiding van de tools ontstaat er ook vanuit de Agri & Food sector een toenemende vraag naar de in de community beschikbare tools en de gehanteerde samenwerkingsvorm. COMBINE beoogt daarom twee doelen: 1. Het combineren van de sectoren High Tech Systemen & Materialen en Agri & Food op het gebied van modelgebaseerd ontwikkelen 2. Het combineren van nieuwe modelgebaseerde technieken op het gebied van systeemmodellering met bestaande low-cost tools Met de deliverables van COMBINE – tools, ontwikkelproces en preconcurrentiële samenwerking – worden bestaande oplossingen voor het MKB verrijkt op het gebied van systeemmodellen en direct gedeeld in een groeiende community die een breder applicatiegebied bestrijkt.