Service of SURF
© 2025 SURF
Purpose: Employer branding (EB) has become a powerful tool for organizations to attract employees. Recruitment communication ideally reveals the image that companies want to portray to potential employees to attract talents with the right skills and competences for the organization. This study explores the impact of EB on employer attractiveness by testing how pre-existing employee preferences interact with EB and how this interaction affects employer attractiveness. Design/methodology/approach: A quasi-experiment among 289 final-year students was used to test the relationships between EB, perceived employer image, person-organization (P-O) fit and employer attractiveness, and the potential moderating variables of pre-existing preferences, in this case operationalized as locational preferences. Students are randomly assigned to four vacancies: one with and one without EB cues in two different locations: Groningen and Amsterdam. The authors used standard scales for attractiveness, perceptions of an employer and person-organization fit. The authors test the relationships using a regression analysis. Findings: Results suggest that if respondents have previous predispositions, then their preference can be enhanced using an EB-targeted strategy. Based on these results, the authors can conclude that EB and related practices can be successful avenues for organizations in the war for talent, particularly if they reaffirm previous preferences of potential employees. Originality/value: The research is original in the way it provides empirical evidence on the relationship between EB and attractiveness, particularly when previous employee preferences exist. This is of value to employers using EB as a tool to influence employer attractiveness.
Culture and tourism have a symbiotic relationship that has the potential to make places more attractive and competitive. This review of the OECD report on The Impact of Culture on Tourism analyzes the ways in which culture and tourism can act as drivers of attractiveness, paying particular attention to the role of potential policy interventions to strengthen this process, including the development of partnerships, funding issues, product development, and marketing. A number of key future issues are identified, and evolving debates in the relationship between culture and tourism are outlined.
We examined the neural correlates of facial attractiveness by presenting pictures of male or female faces (neutral expression) with low/intermediate/high attractiveness to 48 male or female participants while recording their electroencephalogram (EEG). Subjective attractiveness ratings were used to determine the 10% highest, 10% middlemost, and 10% lowest rated faces for each individual participant to allow for high contrast comparisons. These were then split into preferred and dispreferred gender categories. ERP components P1, N1, P2, N2, early posterior negativity (EPN), P300 and late positive potential (LPP) (up until 3000 ms post-stimulus), and the face specific N170 were analysed. A salience effect (attractive/unattractive > intermediate) in an early LPP interval (450–850 ms) and a long-lasting valence related effect (attractive > unattractive) in a late LPP interval (1000–3000 ms) were elicited by the preferred gender faces but not by the dispreferred gender faces. Multi-variate pattern analysis (MVPA)-classifications on whole-brain single-trial EEG patterns further confirmed these salience and valence effects. It is concluded that, facial attractiveness elicits neural responses that are indicative of valenced experiences, but only if these faces are considered relevant. These experiences take time to develop and last well beyond the interval that is commonly explored.
MULTIFILE
In this proposal, a consortium of knowledge institutes (wo, hbo) and industry aims to carry out the chemical re/upcycling of polyamides and polyurethanes by means of an ammonolysis, a depolymerisation reaction using ammonia (NH3). The products obtained are then purified from impurities and by-products, and in the case of polyurethanes, the amines obtained are reused for resynthesis of the polymer. In the depolymerisation of polyamides, the purified amides are converted to the corresponding amines by (in situ) hydrogenation or a Hofmann rearrangement, thereby forming new sources of amine. Alternatively, the amides are hydrolysed toward the corresponding carboxylic acids and reused in the repolymerisation towards polyamides. The above cycles are particularly suitable for end-of-life plastic streams from sorting installations that are not suitable for mechanical/chemical recycling. Any loss of material is compensated for by synthesis of amines from (mixtures of) end-of-life plastics and biomass (organic waste streams) and from end-of-life polyesters (ammonolysis). The ammonia required for depolymerisation can be synthesised from green hydrogen (Haber-Bosch process).By closing carbon cycles (high carbon efficiency) and supplementing the amines needed for the chain from biomass and end-of-life plastics, a significant CO2 saving is achieved as well as reduction in material input and waste. The research will focus on a number of specific industrially relevant cases/chains and will result in economically, ecologically (including safety) and socially acceptable routes for recycling polyamides and polyurethanes. Commercialisation of the results obtained are foreseen by the companies involved (a.o. Teijin and Covestro). Furthermore, as our project will result in a wide variety of new and drop-in (di)amines from sustainable sources, it will increase the attractiveness to use these sustainable monomers for currently prepared and new polyamides and polyurethanes. Also other market applications (pharma, fine chemicals, coatings, electronics, etc.) are foreseen for the sustainable amines synthesized within our proposition.
Teachers have a crucial role in bringing about the extensive social changes that are needed in the building of a sustainable future. In the EduSTA project, we focus on sustainability competences of teachers. We strengthen the European dimension of teacher education via Digital Open Badges as means of performing, acknowledging, documenting, and transferring the competencies as micro-credentials. EduSTA starts by mapping the contextual possibilities and restrictions for transformative learning on sustainability and by operationalising skills. The development of competence-based learning modules and open digital badge-driven pathways will proceed hand in hand and will be realised as learning modules in the partnering Higher Education Institutes and badge applications open for all teachers in Europe.Societal Issue: Teachers’ capabilities to act as active facilitators of change in the ecological transition and to educate citizens and workforce to meet the future challenges is key to a profound transformation in the green transition.Teachers’ sustainability competences have been researched widely, but a gap remains between research and the teachers’ practise. There is a need to operationalise sustainability competences: to describe direct links with everyday tasks, such as curriculum development, pedagogical design, and assessment. This need calls for an urgent operationalisation of educators’ sustainability competences – to support the goals with sustainability actions and to transfer this understanding to their students.Benefit to society: EduSTA builds a community, “Academy of Educators for Sustainable Future”, and creates open digital badge-driven learning pathways for teachers’ sustainability competences supported by multimodal learning modules. The aim is to achieve close cooperation with training schools to actively engage in-service teachers.Our consortium is a catalyst for leading and empowering profound change in the present and for the future to educate teachers ready to meet the challenges and act as active change agents for sustainable future. Emphasizing teachers’ essential role as a part of the green transition also adds to the attractiveness of teachers’ work.
Goal: In 2030 the availability of high quality and fit-for-purpose recycled plastics has been significantly increased by implementation of InReP’s main result: Development of technologies in sorting, mechanical and chemical recycling that make high quality recycled plastics available for the two dominating polymer types; polyolefins (PE/PP) and PET. Results: Our integrated approach in the recycling of plastics will result in systemic (R1) and technological solutions for sorting & washing of plastic waste (R2), mechanical (R3) and chemical recycling (R4, R6) and upcycling (R5, R7) of polyolefins (PE & PP) and polyesters (PET). The obtained knowledge on the production of high quality recycled plastics can easily be transferred to the recycling of other plastic waste streams. Furthermore, our project aims to progress several processes (optimized sorting and washing, mechanical recycling of PP/PE, glycolysis of PET, naphtha from PP/PE and preparation of valuable monomers from PP/PET) to prototype and/or improved performance at existing pilot facilities. Our initiative will boost the attractiveness of recycling, contribute to the circular transition (technical, social, economic), increase the competitiveness of companies involved within the consortium and encourage academic research and education within this field.