Service of SURF
© 2025 SURF
Using socio-scientific issues as a learning context is an effective approach to achieve an important goal in science education, which is to enhance scientific literacy. It involves strengthening skills such as argumentation while also improving an understanding of the Nature of Science and imparting content knowledge. The present study evaluates the impact of a web-based educational instrument consisting of a unique combination of features designed to promote students’ development of skills and knowledge as well as to address the challenges faced by teachers in teaching socio-scientific issues. Participants included 423 students in secondary education. Students in the experimental condition received a three-lesson intervention with the educational instrument, and students in the control condition followed their regular science lessons. Findings indicated that the instrument proves effective in fostering learning outcomes while teachers benefit from the shift of managing classroom discussion to individual guidance of students. Applying the educational instrument in the classroom demonstrates promise in improving student engagement and their comprehension of socio-scientific issues.
Mentor teachers need a versatile supervisory skills repertoire. Besides taking the prevalent role of daily advisor and instructor, mentor teachers should also be able to stimulate reflection in student teachers. Video recordings were analyzed of 60 mentoring dialogues, both before and after a mentor teacher training aiming at developing the encourager role. Mentor teachers' repertoires of supervisory skills were found to consist of an average of seven supervisory skills. After training, a shift was observed in the frequencies and duration with which supervisory skills were used. Although considerable inter-individual variability existed between mentor teachers, training positively affected the use of supervisory skills for stimulating reflection in student teachers.
We assess the incidence of numeracy skills mismatch in five countries: Belgium, Chile, Italy, Netherlands, and the United States of America. To do this, we make use of a new approach (Brun-Schamme & Rey, 2021), namely by identifying someone as being mismatched if the score for numeracy skills is outside the interval [median – SD , median + SD]. We make use of the PIAAC dataset, collected by the OECD, a survey that measures adults’ proficiency in numeracy among other type of skills. We find that 14% of the workers are over-skilled, whereas 16% are under-skilled. Being over-skilled is more likely for men, younger age-groups, having a high level of education, using numeracy skills often at work, and having studied science, mathematics, and engineering.