Service of SURF
© 2025 SURF
Preliminary empirical research conducted by the leading author has shown that design students using biological analogies, or models across different contexts, often misinterpreted these, intentionally or unintentionally, during design. By copying shape or form without integrating the main function of the mimicked biological model, students failed to consider the process or system directing that function when attempting to solve the design need. This article considers the first step in the development of an applicable educational model using distant analogies from nature, by means of biomimicry thinking methodology. The analysis examines results from a base-line exercise taken by students in the Minor Design with Nature during the Spring semester of Industrial Design Engineering at The Hague University of Applied Sciences in 2019, verifying that students without biomimicry training use this hollow approach automatically. This research confirms the gap between where students are at the beginning of the semester and where they need to be as expert sustainable designers when they graduate. These findings provide a starting point for future interventions in biomimicry workshops to improve systematic design thinking through structural and scientifically based iterations of analogical reasoning. https://doi.org/10.1007/s10798-020-09574-1 LinkedIn: https://www.linkedin.com/in/helenkopnina/
MULTIFILE
“Teaching is both an art and a science” (Harrison & Coll, 2008 p.1). Good teaching excites students and cultivates their curiosity to learn more than they are asked. But what if students’ blank faces tell you that the teaching did not land, what can you do? Using an analogy or metaphor to explain the principle helps students visualize and comprehend the knowledge of difficult, abstract concepts by making it familiar. The National Academy of Engineers issued a report in 2008 emphasizing the need for design engineers to develop 21st century skills, such as ingenuity and creativity, and to create innovative products and markets. However, designers have a hard time ignoring evident constraints on their concepts during their design process. This is especially difficult for novice designers when attempting to use analogical reasoning (Osborn, 1963; Hey et al. 2008). Hey et al. explains how the multitude of design considerations is even more difficult for novice as compared to expert designers who are more able to focus on the important features of a problem. Kolodner (1997) iterates how novice designers have difficulty sifting through the mass of information they encounter. They need help with the transfer of knowledge that analogical reasoning requires. When students can clearly extract and articulate what they have learned, this helps them to internalize this. Biomimicry education teaches the clear extraction and articulation while learning to decipher and transfer function analogies from biology to design. This transfer can also improve reasoning when solving problems (Wu and Weng, 2013), reacting to the challenge in a more ‘out-of-the-box’ manner (Yang et al. 2015). However, not being able to fully understand this “conceptual leap between biology and design” in an accurate manner, is sited as a key obstacle of this field (Rowland, 2017; Rovalo and McCardle 2019, p. 1). Therefore, didactics on how to teach this analogical leap to overcome the hurdles is essential. There is insufficient research on the effectivity of biomimicry education in design to help establish ‘best practices’. This thesis offers advice to fill this pedagogical gap to find out how to overcome the obstacle of analogical reasoning for novice designers, while practicing biomimicry. The contribution to science is a not earlier tested methodology that leads to a clearer understanding of the translation of biological strategies and mechanisms found in scientific research. This translation from biology to design in visual and textual manner, is called the Abstracted Design Principle (ADP) and is introduced and explained in detail in chapters 4, 5 and 6 of this thesis. Together with the proposed instructions, we sketch the net-gain of positive mind-set for novice designers on their path to design for a sustainable future.
Toekomstige professionals moeten complexe problemen kunnen oplossen. Hoeleren we dit hbo-studenten? Design thinking en ontwerpgericht onderzoek bieden beiden dezelfde logica voor het ontwerpen van onderbouwde oplossingenvoor complexe problemen. Ze verschillen in accent, met name in inhoudelijke uitgangspunten en de organisatie van het ontwerpproces. Zowel design thinkingals ontwerpgericht onderzoek zijn geschikt voor het oplossen van complexeproblemen, zeker als hun sterke punten in opeenvolgende ontwerpcycli wordengecombineerd.