n the work package described in this report, members are investigating whether a cooperative of farmers can become self-sufficient in energy and fertilization by using manure and organic waste flows in combination with anaerobic fermentation. The aim is to link the nutrient cycle (from manure to digestate to green fertilizer consisting of, for example, nitrate, phosphate, potassium, and trace elements) to a self-sufficient energy system, by the combined production of electricity, green gas, green fuels, and green fertilizers. Within this research such a system is called a circular multi commodity system (CMCS). In effect linking, the nutrient cycle with an energy production chain. In addition, other energy sources and sinks can also play a role in the system such as wind, solar PV and storage (e.g. batteries or hydrogen). For this symbiosis of production techniques to succeed in practice, intensive cooperation between arable farmers and dairy farmers is needed. Farmers supply part of the input from the biofermenter and receive green fertilizers at the end of the process, which are used as a substitute for fertilizer. The case is based on a cooperative of farmers with a minimal geographical spread and maximum diversity in type of business. In this way, the current waste and nutrient chain is being replaced by a more sustainable and closed cycle. This could provide significant environmental benefits: reduction of the environmental impact through the use of fertilizer, reduction of dependence on fossil raw materials, and reduction of CO2 emissions.
n the work package described in this report, members are investigating whether a cooperative of farmers can become self-sufficient in energy and fertilization by using manure and organic waste flows in combination with anaerobic fermentation. The aim is to link the nutrient cycle (from manure to digestate to green fertilizer consisting of, for example, nitrate, phosphate, potassium, and trace elements) to a self-sufficient energy system, by the combined production of electricity, green gas, green fuels, and green fertilizers. Within this research such a system is called a circular multi commodity system (CMCS). In effect linking, the nutrient cycle with an energy production chain. In addition, other energy sources and sinks can also play a role in the system such as wind, solar PV and storage (e.g. batteries or hydrogen). For this symbiosis of production techniques to succeed in practice, intensive cooperation between arable farmers and dairy farmers is needed. Farmers supply part of the input from the biofermenter and receive green fertilizers at the end of the process, which are used as a substitute for fertilizer. The case is based on a cooperative of farmers with a minimal geographical spread and maximum diversity in type of business. In this way, the current waste and nutrient chain is being replaced by a more sustainable and closed cycle. This could provide significant environmental benefits: reduction of the environmental impact through the use of fertilizer, reduction of dependence on fossil raw materials, and reduction of CO2 emissions.
Dit project richt zich op de ontwikkeling van de biotechnologische en chemische procesvoering om op basis van mycelium een alternatief voor leer te produceren. In vergelijking met leer is het voordeel van mycelium dat geen runderen nodig zijn, de productie kan plaatsvinden onder industriële condities en met gebruik van reststromen, de CO2 uitstoot alsook hoeveelheid afval verlaagd wordt, en het gebruik van toxische stoffen zoals chroom wordt vervangen door biobased alternatieven. In het project zullen de procescondities worden bepaald die leiden tot de vorming van optimaal mycelium. Daartoe zullen twee verschillende schimmels worden gekweekt in bioreactoren bij de Hogeschool Arnhem Nijmegen (HAN), waarbij specifiek de effecten van de procescondities (temperatuur, pH, shear, beluchting) en de samenstelling van het kweekmedium op groei van het mycelium en materiaal eigenschappen zullen worden onderzocht. De meest optimale condities zullen vervolgens worden opgeschaald. Op het op deze wijze verkregen materiaal zal Mylium BV een aantal nabehandelingsstappen uitvoeren om de sterkte, elasticiteit, en duurzaamheid van het product te vergroten. Daartoe worden biobased plasticizers, cross-linkers en/of flexibility agents gebruikt. Het resulterende eindproduct zal middels specifiek fysieke testen vergeleken worden met leer alsook worden voorgelegd aan mogelijke klanten. Indien beide resultaten positief zijn kan het betreffende proces na het project verder worden opgeschaald voor toepassing naar de markt.
The maritime transport industry is facing a series of challenges due to the phasing out of fossil fuels and the challenges from decarbonization. The proposal of proper alternatives is not a straightforward process. While the current generation of ship design software offers results, there is a clear missed potential in new software technologies like machine learning and data science. This leads to the question: how can we use modern computational technologies like data analysis and machine learning to enhance the ship design process, considering the tools from the wider industry and the industry’s readiness to embrace new technologies and solutions? The obbjective of this PD project is to bridge the critical gap between the maritime industry's pressing need for innovative solutions for a more agile Ship Design Process; and the current limitations in software tools and methodologies available via the implementation into Ship Design specific software of the new generation of computational technologies available, as big data science and machine learning.
Green methanol is emerging as a key player in sustainable biotech, offering a renewable alternative to fossil fuels or sugar based feedstocks. Although methanol has long been considered a promising material for bioproduction, using it on industrial scale has been challenging due to its high oxygen demands, making the process expensive and inefficient. This project focuses on developing a sustainable, but more economical feasible way to produce biochemicals, like Single Cell Protein (SCP). The innovative solution proposed by FeedstocksUnited (FSU) is to use paraformaldehyde, a compound derived from renewable methanol, as feedstock, which requires much less oxygen during fermentation. This new method has already shown promising results in the lab, where it was tested with microorganisms that can use formaldehyde (released from paraformaldehyde) as a source of carbon and energy. FSU’s approach has the potential to significantly reduce the costs and environmental impacts associated with large-scale bioproduction. The process can be managed more efficiently than methods using methanol, since the production of paraformaldehyde from formaldehyde is tunable. This process control will lead to better yields and reduced energy and feedstock consumption. The HAN BioCentre, with its advanced research facilities and experienced team, will conduct further research to optimize this method for industrial applications. This includes studying how organisms metabolize formaldehyde and improving the process through continuous fermentation. The research also supports educational goals by involving students in cutting-edge biotechnological work. Ultimately, the project aims to provide a solid proof-of-concept that can be scaled up to industrial levels, contributing to a more sustainable bioeconomy.