Service of SURF
© 2025 SURF
Differences in the oscillatory EEG dynamics of reading open class (OC) and closed class (CC) words have previously been found (Bastiaansen et al., 2005) and are thought to reflect differences in lexical-semantic content between these word classes. In particu-lar, the theta-band (4-7 Hz) seems to play a prominent role in lexical-semantic retrieval. We tested whether this theta effect is robust in an older population of subjects. Additionally, we examined how the context of a word can modulate the oscillatory dynamics underly-ing retrieval for the two different classes of words. Older participants (mean age 55) read words presented in either syntactically correct sentences or in a scrambled order ("scram-bled sentence") while their EEG was recorded. We performed time-frequency analysis to examine how power varied based on the context or class of the word. We observed larger power decreases in the alpha (8-12 Hz) band between 200-700 ms for the OC compared to CC words, but this was true only for the scrambled sentence context. We did not observe differences in theta power between these conditions. Context exerted an effect on the alpha and low beta (13-18 Hz) bands between 0 and 700 ms. These results suggest that the previously observed word class effects on theta power changes in a younger participant sample do not seem to be a robust effect in this older population. Though this is an indi-rect comparison between studies, it may suggest the existence of aging effects on word retrieval dynamics for different populations. Additionally, the interaction between word class and context suggests that word retrieval mechanisms interact with sentence-level comprehension mechanisms in the alpha-band.
MULTIFILE
Purpose – purpose of this article is to report about the progress of the development of a method that makes sense of knowledge productivity, in order to be able to give direction to knowledge management initiatives. Methodology/approach – the development and testing of the method is based on the paradigm of the Design Sciences. In order to increase the objectivity of the research findings, and in order to test the transferability of the method, this article suggests a methodology for beta testing. Findings – based on the experiences within this research, the concept of beta testing seems to fit Design Science Research very well. Moreover, applying this concept within this research resulted in valuable findings for further development of the method. Research implications – this is the first article that explicitly applies the concept of beta testing to the process of developing solution concepts. Originality/value – this article contributes to the further operationalization of the relatively new concept of knowledge productivity. From a methodological point of view, this article aims to contribute to the paradigm of the Design Sciences in general, and the concept of beta testing in particular.
Background: A patient decision aid (PtDA) can support shared decision making (SDM) in preference-sensitive care, with more than one clinically applicable treatment option. The development of a PtDA is a complex process, involving several steps, such as designing, developing and testing the draft with all the stakeholders, known as alpha testing. This is followed by testing in ‘real life’ situations, known as beta testing, and then finalising the definite version. Our aim was developing and alpha testing a PtDA for primary treatment of early stage breast cancer, ensuring that the tool is considered relevant, valid and feasible by patients and professionals. Methods: Our qualitative descriptive study applied various methods including face-to-face think-aloud interviews, a focus group and semi-structured telephone interviews. The study population consisted of breast cancer patients facing the choice between breast-conserving therapy with or without preceding neo-adjuvant chemotherapy and mastectomy, and professionals involved in breast cancer care in dedicated multidisciplinary breast cancer teams. Results: A PtDA was developed in four iterative test rounds, taking nearly 2 years, involving 26 patients and 26 professionals. While the research group initially opted for simplicity for the sake of implementation, the clinicians objected that the complexity of the decision could not be ignored. Other topics of concern were the conflicting views of professionals and patients regarding side effects, the amount of information and how to present it. Conclusion: The development was an extensive process, because the professionals rejected the simplifications proposed by the research group. This resulted in the development of a completely new draft PtDA, which took double the expected time and resources. The final version of the PtDA appeared to be well-appreciated by professionals and patients, although its acceptability will only be proven in actual practice (beta testing)