Service of SURF
© 2025 SURF
While the optimal mean annual temperature for people and nations is said to be between 13 °C and 18 °C, many people live productive lives in regions or countries that commonly exceed this temperature range. One such country is Australia. We carried out an Australia-wide online survey using a structured questionnaire to investigate what temperature people in Australia prefer, both in terms of the local climate and within their homes. More than half of the 1665 respondents (58%) lived in their preferred climatic zone with 60% of respondents preferring a warm climate. Those living in Australia's cool climate zones least preferred that climate. A large majority (83%) were able to reach a comfortable temperature at home with 85% using air-conditioning for cooling. The preferred temperature setting for the air-conditioning devices was 21.7 °C (SD: 2.6 °C). Higher temperature set-points were associated with age, heat tolerance and location. The frequency of air-conditioning use did not depend on the location but rather on a range of other socio-economic factors including having children in the household, the building type, heat stress and heat tolerance. We discuss the role of heat acclimatisation and impacts of increasing air-conditioning use on energy consumption.
MULTIFILE
Not much is known about the favourable indoor air quality in long term care facilities (LTCFs), where older adults suffering from dementia live. Older adults, especially those who suffer from dementia, are more sensible to the indoor environment. However, no special requirements for the indoor air in long term care facilities exist. Due to the decrease in cognition function, it is hard to evaluate comfort and health in this group. Nevertheless, infectious diseases are a persistent problem. Based on literature an assessment methodology has been developed to analyse LTCFs to determine if differences in building characteristics and Heating, Ventilation and Air Conditioning (HVAC) systems influence the spread of airborne infectious diseases. The developed methodology is applied in seven long term care facilities in the Netherlands. After that, the methodology has been evaluated and its feasibility and applicability are discussed. From this study, it can be concluded that this method has potential to evaluate, compare LTCFs, and develop design guidelines for these buildings. However, some adjustments to the methodology are necessary to achieve this objective. Therefore, the relation between the indoor environment and infection risk is not yet analysed, but a consistent procedure to analyse this link is provided.
LINK
In this article a generic fault detection and diagnosis (FDD) method for demand controlled ventilation (DCV) systems is presented. By automated fault detection both indoor air quality (IAQ) and energy performance are strongly increased. This method is derived from a reference architecture based on a network with 3 generic types of faults (component, control and model faults) and 4 generic types of symptoms (balance, energy performance, operational state and additional symptoms). This 4S3F architecture, originally set up for energy performance diagnosis of thermal energy plants is applied on the control of IAQ by variable air volume (VAV) systems. The proposed method, using diagnosis Bayesian networks (DBNs), overcomes problems encountered in current FDD methods for VAV systems, problems which inhibits in practice their wide application. Unambiguous fault diagnosis stays difficult, most methods are very system specific, and finally, methods are implemented at a very late stage, while an implementation during the design of the HVAC system and its control is needed. The IAQ 4S3F method, which solves these problems, is demonstrated for a common VAV system with demand controlled ventilation in an office with the use of a whole year hourly historic Building Management System (BMS) data and showed it applicability successfully. Next to this, the influence of prior and conditional probabilities on the diagnosis is studied. Link to the formal publication via its DOI https://doi.org/10.1016/j.buildenv.2019.106632
Nederland streeft naar een verduurzaming van het energiesysteem. In 2020 moet 14% van onze energie duurzaam opgewekt zijn, waarbij de zon, naast wind, als belangrijkste duurzame energiebron gezien wordt. Systemen voor geconcentreerde zonne-energie kunnen worden ingezet voor het opwekken van elektrische en/of thermische energie. Grootschalige systemen (multi-MW) met spiegels worden reeds toegepast in zonnevelden. Het HAN Lectoraat Duurzame Energie werkt al enige jaren aan innovatieve systemen met lenzen waarbij naast het concentreren van direct licht het overblijvende diffuse licht beschikbaar is voor verlichting van de onderliggende ruimte. We willen de in eerdere projecten opgedane kennis en ervaring nu inzetten in een nieuw project, waarin we streven van prototype naar toepassing te komen. De bedrijven zijn benaderd over de nog openstaande vragen. Hieruit is een nieuwe onderzoeksvraag gevormd: Hoe kan voor systemen van geconcentreerde zonne-energie voor toepassingen in glastuinbouw en gebouwde omgevingen voor de productie van zowel elektriciteit als warmte, de energie-opbrengst verhoogd worden door een optimaler gebruik van de lichtinval en met een compacter en duurzamer systeem? In dit project, CONSOLE (acroniem voor CONcentrated SOLar Energy), gaan we werken aan het optimaliseren van de bestaande systemen en het ontwerpen van verbeterde (hybride) systemen voor het opwekken van warmte en elektriciteit in kassen en gebouwde omgeving. We gebruiken hiervoor zowel modellering als meten en testen en komen vanuit een inventarisatie tot een pakket van eisen wat uiteindelijk tot verbeterde prototypes leidt die geschikt zijn voor commerciële toepassing. We doen dit vanuit een nauwe samenwerking met 12 MKB’s, een branche-organisatie en een Centre of Expertise. Daarnaast is er een directe koppeling met het onderwijs, door de betrokkenheid van docent-onderzoekers en studenten in semesterprojecten, stages en afstudeerprojecten.
Door klimaatverandering is het vaker en langer heet in de stad. Hinder door oververhitting in woningen neemt toe. In woonwijken worden steeds meer airconditionings zichtbaar om woningen ook in de zomer comfortabel te houden, met een toenemend energiegebruik als gevolg. Verschillende factoren zijn van invloed op de hoogte van de temperatuur in de woning, zoals het gebied, het gebouw en het gedrag van de bewoner. Professionals van woningcorporaties staan voor ontwerpkeuzes bij renovatie van woningen en willen zekerheid over het effect van die keuzes op de binnentemperatuur. De kennis over de daadwerkelijke binnentemperatuur in bestaande woningen, de beleving van de bewoner en het effect van mogelijke maatregelen is beperkt. Ook is de invloed van de directe omgeving van woningen onbekend. Gemeenten en provincies werken samen aan Regionale energiestrategieën (RES) en warmtevisies. De koelbehoefte wordt hierin momenteel niet meegenomen. Het project Hitte in de woning heeft als doel antwoord te geven op de vraag wat de (toekomstige) koelbehoefte van Nederlandse woningen is en welke maatregelen woningcorporaties, gemeentes en provincies effectief in kunnen zetten om op energiezuinige manier aan deze behoefte te voldoen. Door praktijkmetingen wordt de koelbehoefte en het effect van verschillende maatregelen bepaald. Hiermee wordt in kaart gebracht in welke praktijksituaties daadwerkelijk hinder ontstaat en welke maatregelen zinvol zijn. Ook worden met deze metingen rekenmethodieken aan de praktijk getoetst. Woningcorporaties krijgen handvatten voor zowel ontwerpkeuzes bij renovatie als voor de communicatie naar bewoners over effectief (ventilatie)gedrag. Voor gemeenten en provincies worden de meetresultaten vertaald naar scenario's op het niveau van een stad. Wat is het effect van klimaatverandering op de koelbehoefte (en energievraag) van een stad en wat zijn mogelijke maatregelen waar professionals van gemeenten op kunnen sturen?