Service of SURF
© 2025 SURF
Dit rapport is een schriftelijke weergave van de uitgesproken lectorale rede van Dr. Ir. C.J.M. Heemskerk bij Hogeschool Inholland. De rede geeft een duidelijk beeld van wat robots zijn, waar wij anno 2016 met de ontwikkelingen van de robot staan en hoe snel deze gaan. Robots worden steeds socialer en slimmer. Vanuit de twee werkvelden van het Lectoraat, zorg en agri-food, wordt nader ingegaan op de vraag of de angst dat robots banen overnemen of de mensen zullen overheersen reëel is.
Biomimicry wordt vooral verbonden aan technologische ontwikkelingen. Er zijn veel voorbeelden van producten en innovaties op basis van de biologie. Ingenieurs, architecten, ontwerpers maken gebruik van nieuwe kennis die we hebben opgedaan en opdoen door met moderne middelen de natuur te bestuderen. Mauro Gallo geeft hiervan voorbeelden en gaat daar verder onderzoek naar doen. Van de natuur in haar geheel is meer te leren. In de praktijk van onderwijs, training,advies, consultancy en organisatieontwikkeling, wordt ‘de natuur’ vaak gebruikt als metafoor, als inspiratiebron of als voorbeeld voor allerlei processen zoals leiderschap, samenwerkingen, relaties, en de ontwikkeling van organisaties en de samenleving. Het gaat daarbij veelal over ecologische en veel minder vaak over biologische processen. Langzaam heeft zich de vraag opgedrongen of we in de sociale omgeving meer kunnen leren uit de natuur dan wat we oppervlakkig ‘zien’ en vaak in metaforen vertaald wordt. Meer holistisch bezien gaat het hier over de systemische kant, de complexiteit, de context en de samenhang. Kunnen we bijvoorbeeld aantonen dat fundamentele ecologische principes zoals kringlopen (lerend, zelf organiserend, zelfregulerend en zelfvoorzienend vermogen), successie, diversiteit en veerkracht, sociaal en samenwerkend gedrag, interconnectedness en interdependency toepassen in organisaties leiden tot duurzaam organiseren? In zijn lectoraat doet Mauro Gallo onderzoek naar de betekenis van technische innovaties in en voor de agro- en food sector, en naar de vraag of biomimicry onderbouwd kan worden zodat het bij kan dragen aan het sociaal wetenschappelijk domein. Tegelijkertijd is er een gerichte onderwijsvraag: is het logisch om vanuit ons groene DNA biomimicry-denken mee te nemen in ons onderwijs? Kun je biomimicry leren toepassen en kun je biomimicry toepassen in leren? (Hoe) kunnen we biomimicry toepassen in vmbo en mbo groen, in de lerarenopleiding meegeven aan toekomstige leraren, en opnemen in de professionalisering voor zittende docenten. Is het denkbaar dat het integraal onderdeel van de curricula in het (groene) hbo wordt gericht op het zoeken naar duurzame oplossingen voor vraagstukken in de beroepspraktijk? Zoals hierboven geschetst: genoeg praktijkvragen voor een lectoraat. Daarbij richt het zich echter niet alleen op het toepassen, maar nadrukkelijk op het wetenschappelijk onderbouwen van bio-inspired oplossingen en op het onderwijs.
MULTIFILE
Inleiding en praktijkvraag De groeiende wereldbevolking gecombineerd met de klimaatverandering zorgt voor een de noodzaak tot een duurzame voedselvoorziening (KIA missie Landbouw, voedsel & water). Een significante reductie van gewasbestrijdingsmiddelen is daarbinnen een belangrijke doelstelling. Robotica maakt als technologie motor van de precisielandbouw plant specifieke precisie-bestrijding mogelijk. Het projectconsortium onderzoekt een semiautonoom samenwerkend grond-luchtrobot platform voor de precisielandbouw. Projectdoelstelling De doelstelling van het project AGRobot Platform is dan ook: “Onderzoek de mogelijkheden van een semi-autonoom samenwerkend grond-lucht robotplatform voor de precisielandbouw”. De hoofddoelstelling wordt binnen dit project beantwoordt door de deliverables uit de volgende subdoelstellingen: 1. Case studie onderzoek naar de mogelijke voordelen van het grond-luchtrobotplatform 2. Onderzoek naar de benodigde technologieën voor een grond-luchtrobotplatform 3. Ontwikkelen van een eerste (mogelijk case-specifieke) demonstrator 4. Ontwikkelen van (nieuwe) samenwerkingsvormen. Vraagsturing & Netwerkvorming Riwo Engineering is een industriële automatiseeerder die met zijn grondrobots en control-besturingssytemen actief is in de veeteelt. DRONEXpert gebruikt hyperspectrale camera’s onder drones voor het bemeten van gewassen. Saxion mechatronica onderzoekt met de onderzoekslijn unmanned robotic systems hoe de nieuwste robotica technologieën systemen mogelijk maakt voor ongestructureerde omgevingen. De partners bezitten gezamenlijk een enorm netwerk (TValley, Space53, euRobotics) en klanten om via de case studies de kansen te achterhalen en te realiseren. Innovatie Nergens ter wereld is een samenwerkend grond-luchtrobot platform actief in de precisielandbouw. Voor OostNederland, met naast veel robotica kennis ook veel Agro-kennis, zal het project letterlijk de KIEM zijn voor nieuwe projecten waaruit de valorisatie kansen richting heel Europa gaan. Activiteitenplan & Projectorganisatie Het project wordt geleid door de lector Dr. Ir. D.A.Bekke en uitgevoerd door Abeje Mersha en Mark Reiling samen met het deelnemend MKB. Het project bestaat uit 4 werkpakketten die achtereenvolgens antwoordt geven op de gestelde subdoelstellingen. Aan elk werkpakket zijn deliverables gekoppeld.
De groeiende wereldbevolking zorgt voor noodzaak tot optimaler gebruik van landbouwgrond. De innovatie van de eerste elektrische tractor door Boessenkool B.V. zorgt voor minder rijsporen en daarmee een effectiever landbouw gebruik. Tevens creëert deze elektrificatie de mogelijkheid tot volcontinue automatische landbouw. De in ontwikkeling zijnde landbouw-drone van Drone4Agro B.V. laat geen enkel rijspoor achter en heeft de autonome landbouw tot doel! Saxion, als kennisontwikkelaar van systems engineering en modulaire robotica, en bovengenoemde partners hebben elkaar gevonden tijdens gesprekken over het drone test centrum. Saxion is ook aangesloten bij de SMART Industry agenda Boost van Oost Nederland en mede-oprichter van de netwerkorganisatie LEO Robotics. De centrale kennisvraagstelling luidt: “Is het mogelijk om een koppeling van een autonome drone met een oplaadstation te maken, waarbij de drone een autonome landingsprocedure gebruikt?” Tevens wordt gekeken naar welke kennisvragen opgelost moeten worden om te komen tot (vol‑)automatische landbouwbewerkingen. De autonome besturing en toekomstige volautomatische landbouwbewerkingen openen internationaal de mogelijkheden tot autonome landbouw op grote schaal en voor Saxion tot een duurzame investering in de kenniskring. De technische uitdaging zit hem in de overgang van de GPS gecontroleerde besturing naar de automatische landing/koppelingsprocedure, waarbij een besturingscontrol overdracht moet plaats vinden. Tevens is de technische uitdaging om de besturing zodanig generiek en modulair op te zetten dat het hardware (grond of luchtrobot) onafhankelijk is. De kennis van de besturingen zal gedeeld worden om te komen tot een technische doorontwikkeling van de autonome besturing. Middels de kennisontwikkeling op gebied van autonome besturing en demonstratiemodellen van de luchtrobot en eventueel grondrobot wordt het proof-of-concept aangetoond. Middels stages en afstudeeropdrachten zal geprobeerd worden de kennis te implementeren in de prototypes bij de bedrijven. Middels de bewezen systems engineeringsmethodiek “Het V-model” zullen de functionele klantenwensen t.a.v. de landbouwbewerkingen worden vertaald naar de kennisvragen, mogelijke technische oplossingen en eventuele vervolgprojecten.
De huidige dronetechnologie beperkt zich tot het in lucht brengen van sensoren: ‘ogen en neuzen in de lucht’, ofwel tele-detectie. Partijen in de domeinen: energie (Groningen Seaports, Field Lab Zephyros, AmperaPark), landbouw (Drone4Agro, WUR) en veiligheid (Brandweer Twente, DronExperts) zijn nieuwsgierig naar de volgende doorbaak: ‘handen in de lucht’ ofwel tele-interactie. De UT, Saxion en NHL-Stenden onderschrijven deze ambitieuze doelstelling en gaan onderzoeken of het daadwerkelijk mogelijk is en tot welke ongekende mogelijkheden die nieuwe drone-technologie zal leiden. Het onderzoek richt zich zowel op de vraag of het mogelijk is een prototype van een modulaire en autonome luchtmanipulator (drone + robot-arm) te ontwikkelen die fysiek kan interacteren met een realistische buitenomgeving, als op de vraag welke mogelijkheden dat creëert. In essentie fungeert de luchtmanipulator als ‘armen en handen in de lucht’, die kunnen worden gebruikt voor zowel actieve interactie (onderhoud van offshore windmolen) als passieve interactie (selectieve behandeling van planten en brandbestrijding). In dit project wordt de eerste praktisch toepasbare luchtmanipulator ter wereld ontwikkeld. De consortiumpartners denken dat de doelstellingen zeer ambitieus zijn, maar dat deze door de ervaring van de betrokken partners wel haalbaar zijn. De modulaire luchtmanipulator bestaat uit vier fundamentele bouwstenen: - missie-specifieke interactie-module(s), - intelligente oppervlakteverkenning, - adaptieve interactie control algoritme(s), - geavanceerde on-board perceptie en beslissingsmodule(s). Om onderzoek te doen naar deze bouwstenen zal de “design based research” methodologie worden gebruikt, waardoor meerder iteraties leiden tot nieuwe inzichten en kennis. In dit project zijn de vragen en eisen van de stakeholders het uitgangspunt. Met dit project verrijken Saxion en NHL-Stenden hun kennis op het gebied van autonome systemen, modulaire robotica, manipulatie van de lucht en het gebruik ervan in realistische omgevingen. De project resultaten geven Nederland een voorsprong op nieuwe spin-offs voor inspectie-robotica, agro-robotics en veiligheidssystemen. Bovendien versterkt het project de onderwijsprogramma's door middel van state-of-the-art cases en studentenprojecten.