Service of SURF
© 2025 SURF
In this publication, the four authors provide several solution directions to shape that transition to a new, sustainable agricultural system. With a different relationship between food production and nature and the environment. It is the - necessary - basis for a good agricultural agreement. And the way to work towards a sustainable future for our agricultural sector and food system.
MULTIFILE
Purpose: The purpose of this study is to find determinants about risk resilience and develop a new risk resilience approach for (agricultural) enterprises. This approach creates the ability to respond resiliently to major environmental challenges and changes in the short term and adjust the management of the organization, and to learn and transform to adapt to the new environment in the long term while creating multiple value creation. Design/methodology: The authors present a new risk resilience approach for multiple value creation of (agricultural) enterprises, which consists of a main process starting with strategy design, followed by an environmental analysis, stakeholder collaboration, implement ESG goals, defining risk expose & response options, and report, learn & evaluate. In each step the organizational perspective, as well as the value chain/area perspective is considered and aligned. The authors have used focus groups and analysed literature from and outside the field of finance and accounting, to design this new approach. Findings: Researchers propose a new risk resilience approach for (agricultural) enterprises, based on a narrative about transforming to multiple value creation, founded determinants of risk resilience, competitive advantage and agricultural resilience. Originality and value: This study contributes by conceptualizing risk resilience for (agricultural) enterprises, by looking through a lens of multiple value creation in a dynamic context and based on insights from different fields, actual ESG knowledge, and determinants for risk resilience, competitive advantage and agricultural resilience.
Purpose: This study analyses how weather shocks influence agricultural entrepreneurs’ risk perception and how they manage these risks. It explores what risks agricultural entrepreneurs perceive as important, and how they face climate change and related weather shock risks compared to the multiple risks of the enterprise. Design/methodology: This paper uses qualitative data from several sources: eight semi-structured interviews with experts in agriculture, three focus groups with experts and entrepreneurs, and 32 semi-structured interviews with agricultural entrepreneurs. Findings: not published yet Originality and value: This study contributes to the literature about risk management by small- and medium-sized agricultural enterprises: it studies factors that shape perceptions about weather shocks and about climate change and how these perceptions affect actions to manage related risks, and it identifies factors that motivate agricultural entrepreneurs to adapt to climate change and changing weather shock risks. Practical implications can lay the foundation for concrete actions and policies to improve the resilience and sustainability of the sector, by adjusting risk management strategies, collaboration, knowledge sharing, and climate adaptation policy support.
Family Dairy Tech Sustainable and affordable stable management systems for family dairy farms in India. An example of Dutch technology that is useful to an ?emerging economy?. Summary Problem The demand for dairy products in India is increasing. Small and medium-sized family farmers want to capitalize on this development and the Indian government wants to support them. Dutch companies offer knowledge and a wide range of products and services to improve dairy housing systems and better milk quality, in which India is interested. However, the Dutch technology is sophisticated and expensive. For a successful entry into this market, entrepreneurs have to develop affordable and robust (?frugal?) systems and products adapted to the Indian climate and market conditions. The external question is therefore: ?How can Dutch companies specialised on dairy housing systems adapt their products and offer these on the Indian market to contribute to sustainable and profitable local dairy farming??. Goal Since 2011, VHL University of Applied Sciences (VHL) is collaborating with a college and an agricultural information center Krishi Vigyan Kendra (KVK), Baramati, Pune district, Maharashtra State India. In this region many small-scale dairy farmers are active. Within this project, KVK wants to support farmers to scale up their farm form one or a few cows up to 15 to 100 cows, with a better milk quality. In this innovative project, VHL and Saxion Universities of Applied Sciences, in collaboration with KVK and several Dutch companies want to develop integrated solutions for the growing number of dairy farms in the State of Maharashtra, India. The research questions are: 1. "How can, by smart combinations of existing and new technologies, the cow-varieties and milk- and stable-management systems in Baramati, India, for family farmers be optimized in an affordable and sustainable way?" 2. "What are potential markets in India for Dutch companies in the field of stable management and which innovative business models can support entering this market?" Results The intended results are: 1. A design of an integral stable management system for small and medium-sized dairy farms in India, composed of modified Dutch technologies. 2. A cattle improvement programme for robust cows that are adapted to the conditions of Maharashtra. 3. An advice to Dutch entrepreneurs how to develop their market position in India for their technologies. 4. An advice to Indian family farmers how they can increase their margins in a sustainable way by employing innovative technologies.
In the Netherlands, the theme of transitioning to circular food systems is high on the national agenda. The PBL Netherlands Environmental Assessment Agency has stressed that commuting to circular food chains requires a radical transformation of the food chain where (a) natural resources must be effectively used and managed (soil, water, biodiversity, minerals), (b) there must be an optimum use of food by reducing (food) waste . . ., (c) less environmental pressure, and (d) an optimum use of residue streams. The PBL also recognizes that there should be room for tailored solutions and that it is important to establish a benchmark, to be aware of impacts in the production chain and the added value of products. In the line of circular food systems, an integrated nature-inclusive circular farming approach is needed in order to develop a feasible resource-efficient and sustainable business models that brings shared value into the food chain while invigorating the rural areas including those where agricultural vacancy is occurring. Agroforestry is an example of an integrated nature-inclusive circular farming. It is a multifunctional system that diversifies and adapts the production while reducing the carbon footprint and minimizing the management efforts and input costs; where trees, crops and/or livestock open business opportunities in the food value chains as well as in the waste stream chains. To exploit the opportunities that agroforestry as an integrated resource-efficient farming system adds to the advancement towards (a) valuable circular short food chains, (b) nature-based entrepreneurship (nature-inclusive agriculture), and (c) and additionally, the re-use of abandoned agricultural spaces in the Overijssel province, this project mobilizes the private sector, provincial decision makers, financers and knowledge institutes into developing insights over the feasible implementation of agroforestry systems that can bring economic profit while enhancing and maintaining ecosystem services.
The Hanzehogeschool Groningen (HUAS hereafter) is a University of Applied Sciences that is strongly inspired by the challenges of the North Netherlands region and firmly embedded in the city of Groningen in particular. HUAS has a strong track record in education, and practice-based research, and is dedicated to enhancing innovation and entrepreneurship. HUAS currently has 31,000 students Bachelor and Master students in 70 teaching programs. The 3.000 member of staff forming 17 schools and 7 centres of applied research collaborate to offer a cutting-edge teaching-based research. HUAS took the challenge to develop a strong research capacity with 67 professors, and an increasing number of researchers at various levels, supported by dedicated technical and administration support staff. PhD research thesis are co-supervised in collaboration with various universities in the Netherlands and abroad. HUAS positions itself as an Engaged and Versatile university, both in education and research. In line with this, the overall strategic ambitions of HUAS are to develop suitable learning pathways with recognised qualifications; to conduct applied research with a visible impact on education and society; and to be an adaptive, versatile and approachable organisation. HUAS links these strategic ambitions to three strategic research themes: Energy, Healthy Ageing and Entrepreneurship and four societal themes: strengthening a liveable and sustainable North Netherlands; transition to a healthy and active society; digital transformation; and energy transition and circularity. These four challenges define the focus of HUAS education and research.One of the societal themes is explicitly linked to the region: strengthening a liveable and sustainable North Netherlands. North Netherlands is a powerful, enterprising region with the city of Groningen as the healthiest city in the Netherlands. The region is a front runner in the energy transition, has a European exemplary role in the field of active and healthy ageing, and as an agricultural region, has many opportunities for the development of the circular economy and consequently the development of biobased construction material to mitigate climate change. Cooperation with different groups and stakeholders in the region is central in HUAS’s strategy. HUAS is part of extensive local and regional networks, including the University of the North and Akkoord van Groningen. As such, HUAS is well- connected to the research ecosystem in North Netherlands.HUAS has the ambition to better align, connect & develop on a local as well as a regional, national and international levels. Many of the challenges the North is faced with are also relevant in the EU context. Therefore, HUAS is a strong advocate and actor on engaging in European projects. HUAS monitors regularly the EU’s priorities and aligns its research between these priorities and its immediate societal needs. The EU provides a range of funding opportunities that fulfil our ambition as a research and teaching university and responds directly to our challenges from social, energy, and digital transformation. Indeed, over the last decade, HUAS has been successful in European programmes. In the Horizon 2020 programme, HUAS was part of five approved projects. In Horizon Europe so far two projects were granted. HUAS has performed particular well in the EU societal challenge for a secure, clean and efficient energy system. Examples of this are Making City (https://makingcity.eu/) focussing on the developing Positive Energy Districts, and IANOS (https://ianos.eu/) about the decarbonisation of islands. In addition to EU research and innovation schemes, HUAS has a considerable track record in projects funded by the Interreg schemes. In particular, these types of projects have strong links with region, and partners in the region. Currently, EU participation and involvement of HUAS is mainly concentrated in one field: sustainability & energy. In order to further disseminate to other parts of the university, only a well-designed strategy will allow the various research centres to better reach European fundings and satisfy the university’s ambitions. However, so far, no structured mechanism is in place internally to guide the research community and regional stakeholders how to reach European collaboration with confidence. Therefore, this pilot project aims to develop a strategic framework to enhance the participation of all parties at HUAS, including a pilot project that will lead to improvement and validation.