Service of SURF
© 2025 SURF
The aim of the current study was to examine the effectiveness of a school-centered multicomponent PA intervention, called ‘Active Living’, on children's daily PA levels. A quasi-experimental design was used including 9 intervention schools and 9 matched control schools located in the Netherlands. The baseline measurement took place between March–June 2013, and follow-up measurements were conducted 12 months afterwards. Accelerometer (ActiGraph, GT3X +) data of 520 children aged 8–11 years were collected and supplemented with demographics and weather conditions data. Implementation magnitude of the interventions was measured by keeping logbooks on the number of implemented physical environmental interventions (PEIs) and social environmental interventions (SEIs). Multilevel multivariate linear regression analyses were used to study changes in sedentary behavior (SB), light physical activity (LPA) and moderate-to-vigorous physical activity (MVPA) between baseline and follow-up. Finally, effect sizes (ESs) were calculated using Cohen's d. No pooled effects on PA and SB were found between children exposed and not exposed to Active Living after 12 months. However, children attending Active Living schools that implemented larger numbers of both PEIs and SEIs engaged in 15 more minutes of LPA per weekday at follow-up than children in the control condition (ES = 0.41; p < .05). Moreover, children attending these schools spent less time in SB at follow-up (ES = 0.33), although this effect was non-significant. No significant effects were found on MVPA. A school-centered multicomponent PA intervention holds the potential to activate children, but a comprehensive set of intervention elements with a sufficient magnitude is necessary to achieve at least moderate effect sizes.
MULTIFILE
Our society faces many challenges, necessitating collaborative efforts among multiple stakeholders. Our students learn this in living labs. This paper explores preliminary research on introducing co-design to novices. We introduce a case study exploring how design educators can support students in developing co-design competencies. Central to this study is our Co-Design Canvas, introduced as a pivotal tool for fostering open dialogue among diverse stakeholders. This stimulates collaboration through effective teamwork and empathic formation. The research questions aim to discover effective methods for introducing the Co-Design Canvas to living lab students, and to identify the necessary prior knowledge and expertise for both novices and educators to effectively engage with and teach the Co-Design Canvas. The paper advocates for a pedagogical shift to effectively engage students in multi-stakeholder challenges. Through a series of workshops, the Co-Design Canvas was introduced to novices. We found that this required a significant cognitive stretch for staff and students. The paper concludes by presenting a, for now, final workshop format consisting of assignments that supports introducing the Canvas and thereby co design to societal impact design novices. This program better prepares students and coaches for multi stakeholder challenges within living labs.
MULTIFILE
This paper investigates whether encouraging children to become more physically active in their everyday life affects their primary school performance. We use data from a field quasi‐experiment called the Active Living Program, which aimed to increase active modes of transportation to school and active play among 8‐ to 12‐year‐olds living in low socioeconomic status (SES) areas in the Netherlands. Difference‐in‐differences estimations reveal that while the interventions increase time spent on physical activity during school hours, they negatively affect school performance, especially among the worst‐performing students. Further analyses reveal that increased restlessness during instruction time is a potential mechanism for this negative effect. Our results suggest that the commonly found positive effects of exercising or participating in sports on educational outcomes may not be generalizable to physical activity in everyday life. Policymakers and educators who seek to increase physical activity in everyday life need to weigh the health and well‐being benefits against the probability of increasing inequality in school performance.
In June 2016, two Dutch SME companies which are active in the area of urban solid waste management approached the International Environmental Sciences department of Avans about the current R&D activities on urban solid waste management in cooperation with the Federal University of Minas Gerais (UFMG) Brazil. The companies had interest in developing activities in Brazil, since they are aware of the great potential for exporting both knowledge and technology. Solid waste poses a major problem in Brazil which affects 200 million residents. The Brazilian municipalities collect around 71 million tons solid municipal waste on a yearly basis and only a tiny percentage of this collected waste gets recycled. As such. the overwhelming majority of the collected urban solid waste goes to landfills. Within the State of Minas Gerais there are 850 towns of which 600 have less than 20.000 residents and are agriculturally oriented. Current organic waste composting practices take place under very poor conditions (pathogens and weeds still remain in the compost) and most often the resulting compost product is not well received by its residential and agricultural consumers. As such there is huge room for improvement. The SME companies work with Avans and UFMG to address these challenges. The joint research team consisting of the two Dutch SME companies and the two Research and educational institutes have defined the following research question: What is the current status of organic solid waste management in Minas Gerais and how can cooperation between Brazil and the Netherlands result in a win-win for both countries? Two individual KIEM VANG proposals have been defined in order to address these challenges. The planned activities are a joint effort with professor R. T. de Vasconcelos Barros of the Universidade Federal de Minas Gerais (UFMG) and are executed within the Living Lab Biobased Brazil program (www.biobasedbrazil.org).
Dutch Cycling Intelligence (DCI) embodies all Dutch cycling knowledge to enhances customer-oriented cycling policy. Based on the data-driven cycle policy enhancement tools and knowledge of the Breda University of Applied Sciences, DCI is the next step in creating a learning community between road authorities, consultants, cycling industry, and knowledge institutes with their students. The DCI consists of three pilars:- Connecting- Accelerating knowledge- Developing knowledgeConnecting There are many stakeholders and specialists in the cycling domain. Specialists with additional knowledge about socio-cultural impacts, geo-special knowledge, and technical traffic solutions. All of these specialists need each other to ensure a perfect balance between the (electric) bicycle, the cyclist and the cycle path in its environment. DCI connects and brings together all kind of different specialists.Accelerating knowledge Many bicycle innovations take place in so-called living labs. Within the living lab, the triple helix collaboration between road authorities the industry and knowledge institutes is key. Being actively involved in state-of-the-art innovations creates an inspiring work and learning environment for students and staff. A practical example of a successful living lab is the cycle superhighway F261 between Tilburg and Waalwijk, where BUAS tested new cycle route signage. Next, the Cycling Lab F58 is created, where the road authorities Breda and Tilburg opened up physical cycling infrastructure for entrepreneurs in the bicycle domain and knowledge institutes to develop e-cycling innovation. The living labs are test environments where pilots can be carried out in practice and an excellent environment for students to conduct scientifically applied research.Developing knowledge Ultimately, data and information must be translated into knowledge. With a team of specialists and partners Breda University of applied sciences developed knowledge and tools to monitor and evaluate cycling behavior. By participating in (inter)national research programs BUAS has become one of the frontrunners in data-driven cycle policy enhancement. In close collaboration with road authorities, knowledge institutes as well as consultants, new insights and answers are developed in an international context. By an active knowledge contribution to the network of the Dutch Cycling Embassy, BUAS aims to strengthen its position and add to the global sustainability challenges. Partners: Province Noord-Brabant, Province Utrecht, Vervoerregio Amsterdam, Dutch Cycling Embassy, Tour de Force, University of Amsterdam, Technical University Eindhoven, Technical University Delft, Utrecht University, DTV Capacity building, Dat.mobility, Goudappel Coffeng, Argaleo, Stratopo, Move.Mobility Clients:Province Noord-Brabant, Province Utrecht, Province Zuid-Holland, Tilburg, Breda, Tour de Force
A world where technology is ubiquitous and embedded in our daily lives is becoming increasingly likely. To prepare our students to live and work in such a future, we propose to turn Saxion’s Epy-Drost building into a living lab environment. This will entail setting up and drafting the proper infrastructure and agreements to collect people’s location and building data (e.g. temperature, humidity) in Epy-Drost, and making the data appropriately available to student and research projects within Saxion. With regards to this project’s effect on education, we envision the proposal of several derived student projects which will provide students the opportunity to work with huge amounts of data and state-of-the-art natural interaction interfaces. Through these projects, students will acquire skills and knowledge that are necessary in the current and future labor-market, as well as get experience in working with topics of great importance now and in the near future. This is not only aligned with the Creative Media and Game Technologies (CMGT) study program’s new vision and focus on interactive technology, but also with many other education programs within Saxion. In terms of research, the candidate Postdoc will study if and how the data, together with the building’s infrastructure, can be leveraged to promote healthy behavior through playful strategies. In other words, whether we can persuade people in the building to be more physically active and engage more in social interactions through data-based gamification and building actuation. This fits very well with the Ambient Intelligence (AmI) research group’s agenda in Augmented Interaction, and CMGT’s User Experience line. Overall, this project will help spark and solidify lasting collaboration links between AmI and CMGT, give body to AmI’s new Augmented Interaction line, and increase Saxion’s level of education through the dissemination of knowledge between researchers, teachers and students.