Service of SURF
© 2025 SURF
The central thesis of this book is that access to information represents a vital aspect of contemporary society, encompassing participation, accountability, governance, transparency, the production of products, and the delivery of services. This view is widely shared, with commentators and scholars agreeing that access to information is a key factor in maintaining societal and economic stability. However, having access to information does not guarantee its accessibility. Assuming that information is (cognitively) interpretable is incorrect, as many practical examples illustrate. In the first chapter, this book offers insights into the challenge of access to information in a digitalized world. The concepts of access and accessibility are addressed, elucidating their meanings and delineating the ways in which they are influenced by the exponential growth of information. It examines how information technology introduces a novel access paradox. The second chapter examines the challenges to access to and accessibility of information in a digitalized, hybrid world where code may be law, where there is an inescapable loss of privacy, where doing business opens and restricts access, where literacy is a necessity to survive ‘digital divides,’ and where environmental concerns may have an adverse effect on high expectations. The third chapter presents a review of theoretical approaches to access and accessibility from seven different research perspectives: information access disparity, information seeking, information retrieval, information quality, information security, information management, and archives management. Six approaches to information access and accessibility are identified: [1] social, economic, and political participation; [2] ‘smart’ and evolving technology; [3] power and control; [4] sense-making; [5] knowledge representations, and [6] information survival. The fourth chapter addresses the bottlenecks and requirements for information access and accessibility, culminating in a checklist for organizations to assess these requirements within their own business processes. In the fifth chapter, some perspectives on artificial intelligence and the future of information access are presented. The sixth chapter represents an attempt to draw conclusions and to bring this book to a close.
Intention of healthcare providers to use video-communication in terminal care: a cross-sectional study. Richard M. H. Evering, Marloes G. Postel, Harmieke van Os-Medendorp, Marloes Bults and Marjolein E. M. den Ouden BMC Palliative Care volume 21, Article number: 213 (2022) Cite this articleAbstractBackgroundInterdisciplinary collaboration between healthcare providers with regard to consultation, transfer and advice in terminal care is both important and challenging. The use of video communication in terminal care is low while in first-line healthcare it has the potential to improve quality of care, as it allows healthcare providers to assess the clinical situation in real time and determine collectively what care is needed. The aim of the present study is to explore the intention to use video communication by healthcare providers in interprofessional terminal care and predictors herein.MethodsIn this cross-sectional study, an online survey was used to explore the intention to use video communication. The survey was sent to first-line healthcare providers involved in terminal care (at home, in hospices and/ or nursing homes) and consisted of 39 questions regarding demographics, experience with video communication and constructs of intention to use (i.e. Outcome expectancy, Effort expectancy, Attitude, Social influence, Facilitating conditions, Anxiety, Self-efficacy and Personal innovativeness) based on the Unified Theory of Acceptance and Use of Technology and Diffusion of Innovation Theory. Descriptive statistics were used to analyze demographics and experiences with video communication. A multiple linear regression analysis was performed to give insight in the intention to use video communication and predictors herein.Results90 respondents were included in the analysis.65 (72%) respondents had experience with video communication within their profession, although only 15 respondents (17%) used it in terminal care. In general, healthcare providers intended to use video communication in terminal care (Mean (M) = 3.6; Standard Deviation (SD) = .88). The regression model was significant and explained 44% of the variance in intention to use video communication, with ‘Outcome expectancy’ and ‘Social influence’ as significant predictors.ConclusionsHealthcare providers have in general the intention to use video communication in interprofessional terminal care. However, their actual use in terminal care is low. ‘Outcome expectancy’ and ‘Social influence’ seem to be important predictors for intention to use video communication. This implicates the importance of informing healthcare providers, and their colleagues and significant others, about the usefulness and efficiency of video communication.
MULTIFILE
Communication between healthcare professionals and deaf patients has been particularly challenging during the COVID-19 pandemic. We have explored the possibility to automatically translate phrases that are frequently used in the diagnosis and treatment of hospital patients, in particular phrases related to COVID-19, from Dutch or English to Dutch Sign Language (NGT). The prototype system we developed displays translations either by means of pre-recorded videos featuring a deaf human signer (for a limited number of sentences) or by means of animations featuring a computer-generated signing avatar (for a larger, though still restricted number of sentences). We evaluated the comprehensibility of the signing avatar, as compared to the human signer. We found that, while individual signs are recognized correctly when signed by the avatar almost as frequently as when signed by a human, sentence comprehension rates and clarity scores for the avatar are substantially lower than for the human signer. We identify a number of concrete limitations of the JASigning avatar engine that underlies our system. Namely, the engine currently does not offer sufficient control over mouth shapes, the relative speed and intensity of signs in a sentence (prosody), and transitions between signs. These limitations need to be overcome in future work for the engine to become usable in practice.
During the coronavirus pandemic, the use of eHealth tools became increasingly demanded by patients and encouraged by the Dutch government. Yet, HBO health professionals demand clarity on what they can do, must do, and cannot do with the patients’ data when using digital healthcare provision and support. They often perceive the EU GDPR and its national application as obstacles to the use of eHealth due to strict health data processing requirements. They highlight the difficulty of keeping up with the changing rules and understanding how to apply them. Dutch initiatives to clarify the eHealth rules include the 2021 proposal of the wet Elektronische Gegevensuitwisseling in de Zorg and the establishment of eHealth information and communication platforms for healthcare practitioners. The research explores whether these initiatives serve the needs of HBO health professionals. The following questions will be explored: - Do the currently applicable rules and the proposed wet Elektronische Gegevensuitwisseling in de Zorg clarify what HBO health practitioners can do, must do, and cannot do with patients’ data? - Does the proposed wet Elektronische Gegevensuitwisseling in de Zorg provide better clarity on the stakeholders who may access patients’ data? Does it ensure appropriate safeguards against the unauthorized use of such data? - Does the proposed wet Elektronische Gegevensuitwisseling in de Zorg clarify the EU GDPR requirements for HBO health professionals? - Do the eHealth information and communication platforms set up for healthcare professionals provide the information that HBO professionals need on data protection and privacy requirements stemming from the EU GDPR and from national law? How could such platforms be better adjusted to the HBO professionals’ information and communication needs? Methodology: Practice-oriented legal research, semi-structured interviews and focus group discussions will be conducted. Results will be translated to solutions for HBO health professionals.
The modern economy is largely data-driven and relies on the processing and sharing of data across organizations as a key contributor to its success. At the same time, the value, amount, and sensitivity of processed data is steadily increasing, making it a major target of cyber-attacks. A large fraction of the many reported data breaches happened in the healthcare sector, mostly affecting privacy-sensitive data such as medical records and other patient data. This puts data security technologies as a priority item on the agenda of many healthcare organizations, such as of the Dutch health insurance company Centraal Ziekenfonds (CZ). In particular when it comes to sharing data securely, practical data protection technologies are lacking as they mostly focus on securing the link between two organizations while being completely oblivious of what is happening with the data after sharing. For CZ, searchable encryption (SE) technologies that allow to share data in encrypted form, while enabling the private search on this encrypted data without the need to decrypt, are of particular interest. Unfortunately, existing efficient SE schemes completely leak the access pattern (= pattern of encrypted search results, e.g. identifiers of retrieved items) and the search pattern (= pattern of search queries, e.g. frequency of same queries), making them susceptible to leakage-abuse attacks that exploit this leakage to recover what has been queried for and/or (parts of) the shared data itself. The SHARE project will investigate ways to reduce the leakage in searchable encryption in order to mitigate the impact of leakage-abuse attacks while keeping the performance-level high enough for practical use. Concretely, we propose the construction of SE schemes that allow the leakage to be modeled as a statistic released on the queries and shared dataset in terms of ε-differential privacy, a well-established notion that informally says that, after observing the statistic, you learn approximately (determined by the ε-parameter) the same amount of information about an individual data item or query as if the item was not present in the dataset or the query has not been performed. Naturally, such an approach will produce false positives and negatives in the querying process, affecting the scheme’s performance. By calibrating the ε-parameter, we can achieve various leakage-performance trade-offs tailored to the needs of specific applications. SHARE will explore the idea of differentially-private leakage on different parts of SE with different search capabilities, starting with exact-keyword-match SE schemes with differentially-private leakage on the access pattern only, up to schemes with differentially-private leakage on the access and search pattern as well as on the shared dataset itself, allowing for more expressive query types like fuzzy match, range, or substring queries. SHARE comes with an attack lab in which we investigate existing and new types of leakage-abuse attacks to assess the mitigation-potential of our proposed combination of differential privacy with cryptographic guarantees in searchable encryption. To stimulate commercial exploitation of SHARE-results, our consortium partners CZ and TNO will take the lead on applying and evaluating our envisioned technologies in various healthcare use-cases.