Service of SURF
© 2025 SURF
OBJECTIVE: To investigate the level of agreement of the behavioural mapping method with an accelerometer to measure physical activity of hospitalized patients. DESIGN: A prospective single-centre observational study. SETTING: A university medical centre in the Netherlands. SUBJECTS: Patients admitted to the hospital. MAIN MEASURES: Physical activity of participants was measured for one day from 9 AM to 4 PM with the behavioural mapping method and an accelerometer simultaneously. The level of agreement between the percentages spent lying, sitting and moving from both measures was evaluated using the Bland-Altman method and by calculating Intraclass Correlation Coefficients. RESULTS: In total, 30 patients were included. Mean (±SD) age was 63.0 (16.8) years and the majority of patients were men (n = 18). The mean percentage of time (SD) spent lying was 47.2 (23.3) and 49.7 (29.8); sitting 42.6 (20.5) and 40.0 (26.2); and active 10.2 (6.1) and 10.3 (8.3) according to the accelerometer and observations, respectively. The Intraclass Correlation Coefficient and mean difference (SD) between the two measures were 0.852 and -2.56 (19.33) for lying; 0.836 and 2.60 (17.72) for sitting; and 0.782 and -0.065 (6.23) for moving. The mean difference between the two measures is small (⩽2.6%) for all three physical activity levels. On patient level, the variation between both measures is large with differences above and below the mean of ⩾20% being common. CONCLUSION: The overall level of agreement between the behavioural mapping method and an accelerometer to identify the physical activity levels 'lying', 'sitting' and 'moving' of hospitalized patients is reasonable.
BACKGROUND: Hospital stays are associated with high levels of sedentary behavior and physical inactivity. To objectively investigate physical behavior of hospitalized patients, these is a need for valid measurement instruments. The aim of this study was to assess the criterion validity of three accelerometers to measure lying, sitting, standing and walking. METHODS: This cross-sectional study was performed in a university hospital. Participants carried out several mobility tasks according to a structured protocol while wearing three accelerometers (ActiGraph GT9X Link, Activ8 Professional and Dynaport MoveMonitor). The participants were guided through the protocol by a test leader and were recorded on video to serve as reference. Sensitivity, specificity, positive predictive values (PPV) and negative predictive values (NPV) were determined for the categories lying, sitting, standing and walking. RESULTS: In total 12 subjects were included with a mean age of 49.5 (SD 21.5) years and a mean body mass index of 23.8 kg/m2 (SD 2.4). The ActiGraph GT9X Link showed an excellent sensitivity (90%) and PPV (98%) for walking, but a poor sensitivity for sitting and standing (57% and 53%), and a poor PPV (43%) for sitting. The Activ8 Professional showed an excellent sensitivity for sitting and walking (95% and 93%), excellent PPV (98%) for walking, but no sensitivity (0%) and PPV (0%) for lying. The Dynaport MoveMonitor showed an excellent sensitivity for sitting (94%), excellent PPV for lying and walking (100% and 99%), but a poor sensitivity (13%) and PPV (19%) for standing. CONCLUSIONS: The validity outcomes for the categories lying, sitting, standing and walking vary between the investigated accelerometers. All three accelerometers scored good to excellent in identifying walking. None of the accelerometers were able to identify all categories validly.
This paper explores a method for deducing the affective state of runners using his/her movements. The movements are measured on the arm using a smartphone’s built-in accelerometer. Multiple features are derived from the measured data. We studied which features are most predictive for the affective state by looking at the correlations between the features and the reported affect. We found that changes in runners’ movement can be used to predict change in affective state.
Een beroerte is de belangrijkste oorzaak van invaliditeit in Nederland. Revalidatie van mensen die een beroerte hebben gehad, is erop gericht hen zo zelfstandig mogelijk in hun eigen omgeving te laten functioneren. Vaak zijn er na de revalidatie nog altijd gevolgen van een beroerte, die het zelfstandig functioneren bemoeilijken. Mensen die een beroerte overleven houden er vaak chronische gevolgen aan over, zoals loop- en balansproblemen, verhoogd valrisico, vermoeidheid en depressie. Deze problemen bij thuiswonende mensen met een beroerte resulteren vaak in een inactieve leefstijl. Dit leidt tot een neerwaartse spiraal waarin de fysieke activiteit steeds verder afneemt, patiënten steeds verder deconditioneren, de verzorgingsbehoefte toe- en de mate van zelfstandigheid afneemt en het risico op een volgende beroerte toeneemt. Studies laten zien dat fysieke activiteit een positief effect op gezondheid heeft van patiënten na beroerte. De technologie om fysieke activiteit betrouwbaar en valide te meten is aanwezig en er is inzicht in belemmerende en faciliterende factoren voor fysieke activiteit. Er is echter nog geen bewezen effectieve interventie voor het aanleren en behouden van een fysiek actieve leefstijl voor patiënten na beroerte. Omdat alle richtlijnen voor beroerte aangeven dat het belangrijk is dat patiënten na beroerte fysiek actief zijn, vragen fysiotherapeuten zich af hoe krijgen en houden wij patiënten na een beroerte actief, dus hoe krijgen wij een actieve leefstijl bij een patiënt? Deze praktijkvraag is “vertaald” naar de volgende onderzoeksvraag: Wat is het effect van een beweegstimuleringsinterventie bij thuiswonende patiënten na beroerte op fysieke activiteit en aerobe capaciteit? Deze onderzoeksvraag wordt in drie stappen uitgewerkt: 1. Het ontwikkelen van een veldtest om aerobe capaciteit te meten in de praktijk, 2 Het ontwikkelen van een interventie gericht op het (langdurig) bevorderen van een fysiek actieve leefstijl; 3. Het testen van de feasibility van de interventie in een pilot studie.
Gebruik van sensoren en data voor het monitoren van welzijn en gezondheid van mens en dier, raakt steeds meer ingeburgerd. Ook voor de paardenhouderij is het interessant om met behulp van sensoren de gezondheid en het welzijn van de paarden te volgen en in geval van ziekte of stress preventief te kunnen handelen. In tegenstelling tot het ruime aanbod voor de veehouderij, zijn er voor paarden nog weinig of geen sensoren beschikbaar voor gezondheidsmonitoring. In dit project zullen halsbanden voor paarden worden ontwikkeld met activiteitssensoren (accelerometers), die gedragsdata verzamelen. Deze data worden vertaald in informatie over het normale en afwijkende gedrag van de paarden. Activiteit en gedrag worden gekoppeld aan gezondheid en het welzijn van het paard. Doel is om een systeem te ontwikkelen waarbij gezondheid en welzijn van de paarden gemonitord wordt met behulp van deze sensor, en waarbij de eigenaar gewaarschuwd wordt wanneer veranderingen in gedrag optreden die voorspellend zijn voor ziekte, stress of afwijkingen.
The structure will be monitored real-time and reasons behind the damages will be found. Proposals for protecting the structure against earthquakes will be made. - Damage scenario of the building, in relation to the induced seismicity effects on structures in the region- Establishment of a real-time structural monitoring toolThe building will be instrumented with accelerometers and displacement crack sensors. Additionally to the monitoring efforts, the structure will also be modelled in FE computer simulations in an effort trying to find out possible future response of the monument to strong earthquakes. The monitoring data will be combined with FE simulations in concluding the response of the structure to recursive induced seismic events.