Service of SURF
© 2025 SURF
An overview of whole body scanners in 1998 (H.A.M. Daanen, G.J. Van De Water. Whole body scanners, Displays 19 (1998) 111–120) shortly after they emerged to the market revealed that the systems were bulky, slow, expensive and low in resolution. This update shows that new developments in sensing and processing technology, in particular in structured light scanners, have produced a new generation of easy to transport, fast, inexpensive, accurate and high resolution scanners. The systems are now moving to the consumer market with high impact for the garment industry. Since the internet sales of garments is rapidly increasing, information on body dimensions become essential to guarantee a good fit, and 3D scanners are expected to play a major role.
At this moment, no method is available to objectively estimate the temperature to which skeletal remains have been exposed during a fire. Estimating this temperature can provide crucial information in a legal investigation. Exposure of bone to heat results in observable and measurable changes, including a change in colour. To determine the exposure temperature of experimental bone samples, heat related changes in colour were systemically studied by means of image analysis. In total 1138 samples of fresh human long bone diaphysis and epiphysis, varying in size, were subjected to heat ranging from room temperature to 900 °C for various durations and in different media. The samples were scanned with a calibrated flatbed scanner and photographed with a Digital Single Lens Reflex camera. Red, Green, Blue values and Lightness, A-, and B-coordinates were collected for statistical analysis. Cluster analysis showed that discriminating thresholds for Lightness and B-coordinate could be defined and used to construct a model of decision rules. This model enables the user to differentiate between seven different temperature clusters with relatively high precision and accuracy. The proposed decision model provides an objective, robust and non-destructive method for estimating the exposure temperature of heated bone samples.
MULTIFILE
Objectives: The aim of this study was to assess the predictive value of PMA measurement for mortality. Background: Current surgical risk stratification have limited predictive value in the transcatheter aortic valve implantation (TAVI) population. In TAVI workup, a CT scan is routinely performed but body composition is not analyzed. Psoas muscle area (PMA) reflects a patient's global muscle mass and accordingly PMA might serve as a quantifiable frailty measure. Methods: Multi-slice computed tomography scans (between 2010 and 2016) of 583 consecutive TAVI patients were reviewed. Patients were divided into equal sex-specific tertiles (low, mid, and high) according to an indexed PMA. Hazard ratios (HR) and their confidence intervals (CI) were determined for cardiac and all-cause mortality after TAVI. Results: Low iPMA was associated with cardiac and all-cause mortality in females. One-year adjusted cardiac mortality HR in females for mid-iPMA and high-iPMA were 0.14 [95%CI, 0.05–0.45] and 0.40 [95%CI, 0.15–0.97], respectively. Similar effects were observed for 30-day and 2-years cardiac and all-cause mortality. In females, adding iPMA to surgical risk scores improved the predictive value for 1-year mortality. C-statistics changed from 0.63 [CI = 0.54–0.73] to 0.67 [CI: 0.58–0.75] for EuroSCORE II and from 0.67 [CI: 0.59–0.77] to 0.72 [CI: 0.63–0.80] for STS-PROM. Conclusions: Particularly in females, low iPMA is independently associated with an higher all-cause and cardiac mortality. Prospective studies should confirm whether PMA or other body composition parameters should be extracted automatically from CT-scans to include in clinical decision making and outcome prediction for TAVI.