Service of SURF
© 2025 SURF
Healthy gestational weight gain (GWG) is associated with better pregnancy outcomes and with improved health in the later lives of women and babies. In this thesis the author describes the process of developing an intervention to help pregnant women reach a healthy GWG. The need for this intervention was derived from discussions with midwives, working in primary care in the Netherlands. In this introduction, the author describes the background of the larger project “Promoting Health Pregnancy”, of which this study is a part (1.2), the problem of unhealthy GWG (1.3-1.6) and offers a brief introduction to the theoretical framework of the study and to the subsequent chapters (1.7-1.9).
At the beginning of the twenty first century obesity entered Dutch maternity care as a ‘new illness’ challenging maternity care professionals in providing optimal care for women with higher BMI’s. International research revealed that obese women had more perinatal problems than normal weight women. However, the effect of higher BMIs on perinatal outcomes had never been studied in women eligible for midwife-led primary care at the outset of their pregnancy. In the context of the Dutch maternity care system, it was not clear if obesity should be treated as a high-risk situation always requiring obstetrician-led care or as a condition that may lead to problems that could be detected in a timely manner in midwife-led care using the usual risk assessment tools. With the increased attention on obesity in maternity care there was also increased interest in GWG. Regarding GWG in the Netherlands, the effect of insufficient or excessive GWG on perinatal outcomes had never been studied and there were no validated guidelines for GWG. A midwife’s care for the individual woman in the context of the Dutch maternity care system - characterised by ‘midwife-led care if possible, obstetrician-led care if needed’ - is hampered by the lack of national multidisciplinary consensus regarding obesity and weight gain. Obesity has not yet been included in the OIL and local protocols contain varying recommendations. To enable sound clinical decisions and to offer optimal individual care for pregnant women in the Netherlands more insights in weight and weight gain in relation to perinatal outcomes are required. With this thesis the author intends to contribute to the body of knowledge on weight and weight gain to enhance optimal midwife-led primary care for the individual woman and to guide midwives’ clinical decision-making.
Unhealthy gestational weight gain (GWG) contributes to long-term obesity in women and their offspring. The aim of this study is to quantify midwives’ behavior in promoting healthy GWG and to identify the most important determinants related to this behavior.
Recycling of plastics plays an important role to reach a climate neutral industry. To come to a sustainable circular use of materials, it is important that recycled plastics can be used for comparable (or ugraded) applications as their original use. QuinLyte innovated a material that can reach this goal. SmartAgain® is a material that is obtained by recycling of high-barrier multilayer films and which maintains its properties after mechanical recycling. It opens the door for many applications, of which the production of a scoliosis brace is a typical example from the medical field. Scoliosis is a sideways curvature of the spine and wearing an orthopedic brace is the common non-invasive treatment to reduce the likelihood of spinal fusion surgery later. The traditional way to make such brace is inaccurate, messy, time- and money-consuming. Because of its nearly unlimited design freedom, 3D FDM-printing is regarded as the ultimate sustainable technique for producing such brace. From a materials point of view, SmartAgain® has the good fit with the mechanical property requirements of scoliosis braces. However, its fast crystallization rate often plays against the FDM-printing process, for example can cause poor layer-layer adhesion. Only when this problem is solved, a reliable brace which is strong, tough, and light weight could be printed via FDM-printing. Zuyd University of Applied Science has, in close collaboration with Maastricht University, built thorough knowledge on tuning crystallization kinetics with the temperature development during printing, resulting in printed products with improved layer-layer adhesion. Because of this knowledge and experience on developing materials for 3D printing, QuinLyte contacted Zuyd to develop a strategy for printing a wearable scoliosis brace of SmartAgain®. In the future a range of other tailor-made products can be envisioned. Thus, the project is in line with the GoChem-themes: raw materials from recycling, 3D printing and upcycling.
Recent research by the renowned Royal Institution of Chartered Surveyors (RICS) shows that more than 2/3 of all CO2 is emitted during the building process and less than 1/3 during use to heat the building and the tap water. Lightweight, local and biobased materials such as biocomposites to replace concrete and fossil based cladding are in the framework of climate change, a necessity for future building. Using plant fiber in polymer composites is especially interesting for construction since natural fibers exhibit comparative good mechanical properties with small specific weight, which defines the potential for lightweight constructions. The use of renewable resources, will affect the ecosystem favorably and the production costs of construction materials could also decrease. However, one disadvantage of natural fibers in plastics is their hydrophilic properties. In construction the materials need to meet special requirements like the resistance against fluctuating weather conditions (Ticoalu et al., 2010). In contrast to synthetic fibers, the natural ones are more moisture- and UV-radiation-sensitive. That may lead to degradation of these materials and a decreasing in quality of products. (Lopez et al., 2006; Mokhothu und John, 2017) Tanatex and NPSP have approached CoE BBE/Avans to assist in a study where fibres impregnated with the (modified) Tanatex products will be used for reinforcement of thermoset biopolymers. The influence of the different Tanatex products on the moisture absorption of natural/cellulosic fibers and the adhesion on the fibers on main composite matrix will be measured. The effect of Tantex products can optimize the bonding reaction between the resin and the fibers in the (bio) composite and result to improved strength and physico-chemical properties of the biocomposite materials. (word count: 270)
Buildings are responsible for approximately 40% of energy consumption and 36% of carbon dioxide (CO2) emissions in the EU, and the largest energy consumer in Europe (https://ec.europa.eu/energy). Recent research shows that more than 2/3 of all CO2 is emitted during the building process whereas less than 1/3 is emitted during use. Cement is the source of about 8% of the world's CO2 emissions and innovation to create a distributive change in building practices is urgently needed, according to Chatham House report (Lehne et al 2018). Therefore new sustainable materials must be developed to replace concrete and fossil based building materials. Lightweight biobased biocomposites are good candidates for claddings and many other non-bearing building structures. Biocarbon, also commonly known as Biochar, is a high-carbon, fine-grained solid that is produced through pyrolysis processes and currently mainly used for energy. Recently biocarbon has also gained attention for its potential value with in industrial applications such as composites (Giorcellia et al, 2018; Piri et.al, 2018). Addition of biocarbon in the biocomposites is likely to increase the UV-resistance and fire resistance of the materials and decrease hydrophilic nature of composites. Using biocarbon in polymer composites is also interesting because of its relatively low specific weight that will result to lighter composite materials. In this Building Light project the SMEs Torrgas and NPSP will collaborate with and Avans/CoE BBE in a feasibility study on the use of biocarbon in a NPSP biocomposite. The physicochemical properties and moisture absorption of the composites with biocarbon filler will be compared to the biocomposite obtained with the currently used calcium carbonate filler. These novel biocarbon-biocomposites are anticipated to have higher stability and lighter weight, hence resulting to a new, exciting building materials that will create new business opportunities for both of the SME partners.