Service of SURF
© 2025 SURF
The aim of the present study was to investigate if the presence of anterior cruciate ligament (ACL) injury risk factors depicted in the laboratory would reflect at-risk patterns in football-specific field data. Twenty-four female footballers (14.9 ± 0.9 year) performed unanticipated cutting maneuvers in a laboratory setting and on the football pitch during football-specific exercises (F-EX) and games (F-GAME). Knee joint moments were collected in the laboratory and grouped using hierarchical agglomerative clustering. The clusters were used to investigate the kinematics collected on field through wearable sensors. Three clusters emerged: Cluster 1 presented the lowest knee moments; Cluster 2 presented high knee extension but low knee abduction and rotation moments; Cluster 3 presented the highest knee abduction, extension, and external rotation moments. In F-EX, greater knee abduction angles were found in Cluster 2 and 3 compared to Cluster 1 (p = 0.007). Cluster 2 showed the lowest knee and hip flexion angles (p < 0.013). Cluster 3 showed the greatest hip external rotation angles (p = 0.006). In F-GAME, Cluster 3 presented the greatest knee external rotation and lowest knee flexion angles (p = 0.003). Clinically relevant differences towards ACL injury identified in the laboratory reflected at-risk patterns only in part when cutting on the field: in the field, low-risk players exhibited similar kinematic patterns as the high-risk players. Therefore, in-lab injury risk screening may lack ecological validity.
MULTIFILE
The aim of the present study was to investigate if the presence of anterior cruciate ligament (ACL) injury risk factors depicted in the laboratory would reflect at-risk patterns in football-specific field data. Twenty-four female footballers (14.9 ± 0.9 year) performed unanticipated cutting maneuvers in a laboratory setting and on the football pitch during football-specific exercises (F-EX) and games (F-GAME). Knee joint moments were collected in the laboratory and grouped using hierarchical agglomerative clustering. The clusters were used to investigate the kinematics collected on field through wearable sensors. Three clusters emerged: Cluster 1 presented the lowest knee moments; Cluster 2 presented high knee extension but low knee abduction and rotation moments; Cluster 3 presented the highest knee abduction, extension, and external rotation moments. In F-EX, greater knee abduction angles were found in Cluster 2 and 3 compared to Cluster 1 (p = 0.007). Cluster 2 showed the lowest knee and hip flexion angles (p < 0.013). Cluster 3 showed the greatest hip external rotation angles (p = 0.006). In F-GAME, Cluster 3 presented the greatest knee external rotation and lowest knee flexion angles (p = 0.003). Clinically relevant differences towards ACL injury identified in the laboratory reflected at-risk patterns only in part when cutting on the field: in the field, low-risk players exhibited similar kinematic patterns as the high-risk players. Therefore, in-lab injury risk screening may lack ecological validity.
Wearable inertial sensors (WIS) facilitate the preservation of the athlete-environment relationship by allowing measurement outside the laboratory. WIS systems should be validated for team sports movements before they are used in sports performance and injury prevention research. The aim of the present study was to investigate the concurrent validity of a wearable inertial sensor system in quantifying joint kinematics during team sport movements. Ten recreationally active participants performed change-of-direction (single-leg deceleration and sidestep cut) and jump-landing (single-leg hop, single-leg crossover hop, and double-leg vertical jump) tasks while motion was recorded by nine inertial sensors (Noraxon MyoMotion, Noraxon USA Inc.) and eight motion capture cameras (Vicon Motion Systems Ltd). Validity of lower-extremity joint kinematics was assessed using measures of agreement (cross-correlation: XCORR) and error (root mean square deviation; and amplitude difference). Excellent agreement (XCORR >0.88) was found for sagittal plane kinematics in all joints and tasks. Highly variable agreement was found for frontal and transverse plane kinematics at the hip and ankle. Errors were relatively high in all planes. In conclusion, the WIS system provides valid estimates of sagittal plane joint kinematics in team sport movements. However, researchers should correct for offsets when comparing absolute joint angles between systems.
The focus of the research is 'Automated Analysis of Human Performance Data'. The three interconnected main components are (i)Human Performance (ii) Monitoring Human Performance and (iii) Automated Data Analysis . Human Performance is both the process and result of the person interacting with context to engage in tasks, whereas the performance range is determined by the interaction between the person and the context. Cheap and reliable wearable sensors allow for gathering large amounts of data, which is very useful for understanding, and possibly predicting, the performance of the user. Given the amount of data generated by such sensors, manual analysis becomes infeasible; tools should be devised for performing automated analysis looking for patterns, features, and anomalies. Such tools can help transform wearable sensors into reliable high resolution devices and help experts analyse wearable sensor data in the context of human performance, and use it for diagnosis and intervention purposes. Shyr and Spisic describe Automated Data Analysis as follows: Automated data analysis provides a systematic process of inspecting, cleaning, transforming, and modelling data with the goal of discovering useful information, suggesting conclusions and supporting decision making for further analysis. Their philosophy is to do the tedious part of the work automatically, and allow experts to focus on performing their research and applying their domain knowledge. However, automated data analysis means that the system has to teach itself to interpret interim results and do iterations. Knuth stated: Science is knowledge which we understand so well that we can teach it to a computer; and if we don't fully understand something, it is an art to deal with it.[Knuth, 1974]. The knowledge on Human Performance and its Monitoring is to be 'taught' to the system. To be able to construct automated analysis systems, an overview of the essential processes and components of these systems is needed.Knuth Since the notion of an algorithm or a computer program provides us with an extremely useful test for the depth of our knowledge about any given subject, the process of going from an art to a science means that we learn how to automate something.
A world where technology is ubiquitous and embedded in our daily lives is becoming increasingly likely. To prepare our students to live and work in such a future, we propose to turn Saxion’s Epy-Drost building into a living lab environment. This will entail setting up and drafting the proper infrastructure and agreements to collect people’s location and building data (e.g. temperature, humidity) in Epy-Drost, and making the data appropriately available to student and research projects within Saxion. With regards to this project’s effect on education, we envision the proposal of several derived student projects which will provide students the opportunity to work with huge amounts of data and state-of-the-art natural interaction interfaces. Through these projects, students will acquire skills and knowledge that are necessary in the current and future labor-market, as well as get experience in working with topics of great importance now and in the near future. This is not only aligned with the Creative Media and Game Technologies (CMGT) study program’s new vision and focus on interactive technology, but also with many other education programs within Saxion. In terms of research, the candidate Postdoc will study if and how the data, together with the building’s infrastructure, can be leveraged to promote healthy behavior through playful strategies. In other words, whether we can persuade people in the building to be more physically active and engage more in social interactions through data-based gamification and building actuation. This fits very well with the Ambient Intelligence (AmI) research group’s agenda in Augmented Interaction, and CMGT’s User Experience line. Overall, this project will help spark and solidify lasting collaboration links between AmI and CMGT, give body to AmI’s new Augmented Interaction line, and increase Saxion’s level of education through the dissemination of knowledge between researchers, teachers and students.
Er zijn veel situaties waarin het belangrijk is om de positie en/of de loopbeweging van personen te kunnen meten, zoals voor de brandweer, voor het leger, in de sport of bij revalidatie. In een aantal situaties geldt hierbij de randvoorwaarde dat je geen gebruik kunt maken van bestaande infrastructuren. GPS werkt bijvoorbeeld alleen buiten en is voor veel toepassingen niet nauwkeurig genoeg. Infrastructuur in gebouwen (zoals WiFi) werkt niet altijd bij brand, en bovendien wil je vaak (ambulant) meten in een praktijkomgeving of in een onbekend gebouw, in plaats van in een ?labomgeving?. Een interessant gegeven is dat de afzonderlijke technieken voor het oplossen van bovenstaande problemen wel bestaan, maar dat nog geen enkele partij deze heeft kunnen integreren in een bruikbaar product. Blijkbaar levert de inherente complexiteit van het onderwerp van dergelijke systemen problemen op. In het SaxShoe project onderzoeken Saxion, HvA, NHL, Universiteit Twente en het bedrijfsleven hoe we een schoen-zool systeem kunnen ontwikkelen voor het meten en op afstand monitoren van de locatie en het loopgedrag van de gebruiker in situaties waarbij standaard infrastructuur (GPS, WiFi, camera?s) ontbreekt. In het project wordt een empirische aanpak gehanteerd. Dit op basis van de constatering dat veel zaken in theorie wel zouden moeten werken, maar dat de praktijk weerbarstig is. Door cyclisch een sensorschoen te ontwikkelen worden kennisvragen beantwoord. Deze (deel)vragen betreffen kennisontwikkeling voor nauwkeurige positiebepaling op basis van inertiële navigatie, en gerelateerde vragen rond communicatie, energievoorziening, de verwerking in een schoen en de werking in praktijksituaties. Op basis van gebruikersfeedback wordt het onderzoek continue bijgestuurd (agile development). Om de aanpak concreet te maken richt het project zicht op het ontwikkelen van een brandweerlaars, als middel, niet als doel, maar wel als showcase voor de kennisontwikkeling. De ambitie is het realiseren van de norm van maximaal 10 meter afwijking na 20 minuten lopen. Hiervoor werken in het project topbedrijven die gespecialiseerd zijn in sensortechnologie samen met hogescholen en met bedrijven die gespecialiseerd zijn in de productie van schoenen en zolen. Het project levert inzicht, oplossingen en ontwerpregels op voor de problematiek die speelt bij het ontwerpen van wearables voor het meten van locatie en loopgedrag. Voor de technische bedrijven in het project biedt SaxShoe de mogelijkheid om nieuwe markten te openen voor bestaande technologieën. Voor de eindgebruikers, zoals de brandweer, biedt het concrete oplossingen voor bestaande problemen zoals de veiligheid van hulpverleners in gevaarlijke situaties.