Service of SURF
© 2025 SURF
This study introduces a detailed method for analyzing the buckling behavior of laminated composite structures strengthened with multi-walled carbon nanotubes (MWCNTs). We propose a multi-scale analysis that combines analytical and computational techniques to assess the mechanical performance of MWCNT-reinforced composites under combined moisture, temperature, and mechanical stress conditions. The Halpin-Tsai equations are used to calculate the overall stiffness properties of the nano-enhanced matrix, considering factors like MWCNT clustering, alignment, and curvature. Additionally, we incorporate the nanoscopic, size-dependent features of MWCNTs into our model. The Chamis micromechanical formulas are applied to determine the individual elastic properties of the nanocomposite layers, considering the impacts of temperature and moisture. We then explore how variables such as MWCNT content and size, along with temperature and moisture levels, influence the critical buckling load of MWCNT-based laminated composite beams and plates using our multi-scale model. Our results are successfully compared with existing experimental and theoretical data to validate our approach. The developed method offers significant insights for the design and optimization of MWCNT-reinforced composites, potentially benefiting various engineering fields, including aerospace and automotive industries.
Conference proceedings International Symposium on Intelligent Manufacturing Environments
From the article: Abstract—By using agent technology, a versatile and modular monitoring system can be built. In this paper, such a multiagentbased monitoring system will be described. The system can be trained to detect several conditions in combination and react accordingly. Because of the distributed nature of the system, the concept can be used in many situations, especially when combinations of different sensor inputs are used. Another advantage of the approach presented in this paper is the fact that every monitoring system can be adapted to specific situations. As a case-study, a health monitoring system will be presented.