Service of SURF
© 2025 SURF
BACKGROUND: Increasing evidence indicates the potential benefits of restricted fluid management in critically ill patients. Evidence lacks on the optimal fluid management strategy for invasively ventilated COVID-19 patients. We hypothesized that the cumulative fluid balance would affect the successful liberation of invasive ventilation in COVID-19 patients with acute respiratory distress syndrome (ARDS).METHODS: We analyzed data from the multicenter observational 'PRactice of VENTilation in COVID-19 patients' study. Patients with confirmed COVID-19 and ARDS who required invasive ventilation during the first 3 months of the international outbreak (March 1, 2020, to June 2020) across 22 hospitals in the Netherlands were included. The primary outcome was successful liberation of invasive ventilation, modeled as a function of day 3 cumulative fluid balance using Cox proportional hazards models, using the crude and the adjusted association. Sensitivity analyses without missing data and modeling ARDS severity were performed.RESULTS: Among 650 patients, three groups were identified. Patients in the higher, intermediate, and lower groups had a median cumulative fluid balance of 1.98 L (1.27-7.72 L), 0.78 L (0.26-1.27 L), and - 0.35 L (- 6.52-0.26 L), respectively. Higher day 3 cumulative fluid balance was significantly associated with a lower probability of successful ventilation liberation (adjusted hazard ratio 0.86, 95% CI 0.77-0.95, P = 0.0047). Sensitivity analyses showed similar results.CONCLUSIONS: In a cohort of invasively ventilated patients with COVID-19 and ARDS, a higher cumulative fluid balance was associated with a longer ventilation duration, indicating that restricted fluid management in these patients may be beneficial. Trial registration Clinicaltrials.gov ( NCT04346342 ); Date of registration: April 15, 2020.
Kunstmest voor de velden en brandstof voor landbouwvoertuigen zijn belangrijke kostenposten voor de landbouw. Kunstmest en dieselbrandstof zijn energie-intensieve producten en daarmee ook een belangrijke bron van CO2 emissies vanuit de landbouw. Technologie voor hernieuwbare energie zoals zonne- en wind energie wordt steeds goedkoper waardoor het rendabeler wordt deze technologie ook te gebruiken. Terug leveren van geproduceerde hernieuwbare elektriciteit aan het elektriciteitsnet is echter niet altijd voordelig. De hernieuwbare energie moet hier concurreren met gesubsidieerde fossiele elektriciteit opgewekt met kolen, gas en kerncentrales. Kleinschalige decentrale productie op het boerenbedrijf van zowel kunstmest als transportbrandstof met behulp van hernieuwbare energie levert de boer en zijn omgeving direct voordeel op:Inkoopkosten voor deze producten worden lagerVermindert de CO2-emissie van de landbouw aanzienlijk, de carbo-footprint wordt verminderdRendement op hernieuwbare energie technologie wordt hogerAmmoniak (NH3) is zowel grondstof voor kunstmest als brandstof voor motoren. Ammoniak kan diesel voor meer dan 90% vervangen in bestaande dieselmotoren. Daarmee is ammoniak een uitstekende vervanger voor diesel in het landbouw en wegverkeer. Ammoniak is ook grondstof voor waterstof (H2) in waterstofmotoren. De technologie om ammoniak te maken is gebaseerd op het Haber-Bosch proces uit het begin van de vorige eeuw. Deze technologie vraagt veel energie voor het creëren van de hoge druk en de hoge temperaturen. Daarom is het voordelig het Haber-Bosch proces in grote installaties uit te voeren.Nieuwe brandstofcel-technologie maakt het mogelijk het Haber-Bosch proces (elektro-katalytisch) op kleine schaal uit te voeren. Het Kiemkracht concept Greenfertilizer onderzoekt de mogelijkheden van deze technologie voor ammoniak productie en benutting op het eigen boerenbedrijf.Het onderzoek is uitgevoerd door TU-Delft en Hanzehogeschool. Het doel was een opgeschaald ammonia elektrolyse synthese proces te ontwikkelen waar een eerste schaal-sprong gemaakt zou worden.Het elektrochemisch ammonia synthese proces is gebaseerd op zuurstofgeleidende elektroden, (proces figuur3. zie onder). Het voordeel van deze zuurstofgeleidende electroden boven proton geleidende electroden is dat er met omgevingslucht gewerkt kan worden in plaats van met stoom. Stoom maakt technologische ontwikkeling van het proces gecompliceerder. Experimenteel en theoretisch onderzoek van TU-Delft laat zien dat met deze elektroden ammonia te produceren is. TU-Delft heeft met zuurstof geleidende electroden ammonia productiesnelheden behaald van 1,84x 10-10 mol s-1 cm-2 bij 650oC. Deze snelheden zijn een factor 100-1000 hoger dan tot nu toe gerapporteerd in literatuur (Kyriakou et al 2017). Simulatie-studies van TU-Delft laten zien dat het ammonia synthese proces met een factor 100-1000 versneld kan worden door het proces onder druk te brengen bij een temperatuur van 400-500C. Op basis van deze simulaties is een ontwerp gemaakt en uitgevoerd voor een “hoge-druk electrolyse reactor”. Technische complicaties met deze hoge druk elektrolyse reactor maakte het onmogelijk betrouwbare resultaten te verkrijgen. Met name gas lekkages bij hoge temperaturen maakten het onmogelijk ammonia massabalansen op te stellen. Bovendien was ammonia productie niet aan te tonen. Hiermee zijn de simulatie voorspellingen niet bevestigd en blijft het onduidelijk of de onderliggende hypothesen correct zijn. De Hanzehogeschool heeft onderzoek uitgevoerd naar het concentreren van ammonia voor toepassing als vloeibare kunstmest. Uitgangspunt hierbij waren de ammonia productieniveau van de experimentele opzet en de voorspelde gesimuleerde opzet. Met de juiste technologie is het mogelijk de ammonia te concentreren voor verdere verwerking als kunstmest. Echter dit proces is economisch rendabel bij een ammonia concentratie in de uitstroom van de elektrolyse reactor die een factor 1000 hoger is dan tot nu toe is gemeten. Het feit dat de TU-Delft er niet in is geslaagd een kleine schaalsprong (factor 10) te maken met de drukreactor betekent dat commerciële toepassing van dit proces voorlopig nog niet aan de orde is. Achteraf gezien was het wellicht beter geweest de keuze te maken voor de proton geleidende electroden die bij lagere temperaturen werkzaam zijn, hier is een schaalsprong van een factor 100 ten opzichte van de recent gerapporteerde ammonia synthese snelheden. Een recente review door Kyriakou et al 2017 geeft als aanbeveling onderzoek te verrichten naar verbeterde elektrodematerialen en geleidende elektrolyten in de reactorcellen. Uiteindelijk zal het elektrochemisch ammonia synthese proces er komen vanwege de vele voordelen die het beidt. Processen moeten met een factor 100-1000 verbeterd worden eer het proces economisch rendabel is. Op dit moment is het nog niet te voospellen wanneer dit moment er is.
This report focuses on the feasibility of the power-to-ammonia concept. Power-to-ammonia uses produced excess renewable electricity to electrolyze water, and then to react the obtained hydrogen with nitrogen, which is obtained through air separation, to produce ammonia. This process may be used as a “balancing load” to consume excess electricity on the grid and maintain grid stability. The product, ammonia, plays the role of a chemical storage option for excess renewable energy. This excess energy in the form of ammonia can be stored for long periods of time using mature technologies and an existing global infrastructure, and can further be used either as a fuel or a chemical commodity. Ammonia has a higher energy density than hydrogen; it is easier to store and transport than hydrogen, and it is much easier to liquefy than methane, and offers an energy chain with low carbon emissions.The objective of this study is to analyze technical, institutional and economic aspects of power-to-ammonia and the usage of ammonia as a flexible energy carrier.