Service of SURF
© 2025 SURF
This article reviews direct freshwater consumption in tourism from both quantitative and qualitative viewpoints to assess the current water demand of the tourism sector and to identify current and future management challenges. The article concludes that even though tourism increases global water consumption, direct tourism-related water use is considerably less than 1% of global consumption, and will not become significant even if the sector continues to grow at anticipated rates of around 4% per year (international tourist arrivals). The situation differs at the regional level because tourism concentrates traveller flows in time and space, and often-in dry destinations where water resources are limited. Furthermore, the understanding of tourism's indirect water requirements, including the production of food, building materials and energy, remains inadequately understood, but is likely to be more substantial than direct water use. The article concludes that with expected changes in global precipitation patterns due to climate change, it is advisable in particular for already water scarce destinations to engage in proactive water management. Recommendations for managing tourism's water footprint are made.
LINK
Over the past 20 years, water quality in Indonesia has deteriorated due to an increase of water pollution. Research and analysis is needed to identify pollution sources and assess contamination in Indonesian water resources. Water quality management is not yet sufficiently integrated in river basin management in Indonesia, which mainly focuses on water quantity. Women are comparatively highly impacted by failing water resources management, but theirinvolvement in decision making processes is limited. Water quality deterioration continues to increase socio-economic inequality, as it are the most poor communities who live on and along the river. The uneven water quality related disease burden in Brantas River Basin widens the socio-economic gap between societal groups. In the Brantas region, cooperation and intention between stakeholders to tackle these issues is growing, but is fragile as well due to overlapping institutional mandates, poor status of water quality monitoring networks, and limited commitment of industries to treat their waste water streams. The existing group of Indonesian change makers will be supported by this project. Three Indonesian and three Dutch organisations have teamed up to support negotiation platforms in order to deal with institutional challenges, to increase water quality monitoring capacity, to build an enabling environment facilitating sustainable industrial change, and to develop an enabling environment in support of community concerns and civil society initiatives. The project builds on integrated water quality monitoring and modelling within a framework of social learning. The strong consortium will be able to build links with civil society groups (including women, farmer and fisher unions) in close cooperation with local, regional and national Indonesian governmentinstitutions to clean the Brantas river and secure income and health for East Java’s population, in particular the most vulnerable groups.
Fresh water systems are rapidly changing and water quality is deteriorating as a result of climate change. Aquatic drones can help us understand these changes - which will be key to tackling water-related challenges ahead.The ideas presented in this article aim to inspire adaptation action – they are the views of the author and do not necessarily reflect those of the Global Center on Adaptation.
LINK
Despite their various appealing features, drones also have some undesirable side-effects. One of them is the psychoacoustic effect that originates from their buzzing noise that causes significant noise pollutions. This has an effect on nature (animals run away) and on humans (noise nuisance and thus stress and health problems). In addition, these buzzing noises contribute to alerting criminals when low-flying drones are deployed for safety and security applications. Therefore, there is an urgent demand from SMEs for practical knowledge and technologies that make existing drones silent, which is the main focus of this project. This project contributes directly to the KET Digital Innovations\Robotics and multiple themes of the top sectors: Agriculture, Water and Food, Health & Care and Safety. The main objective of this project is: Investigate the desirability and possibilities of extremely silent drone technologies for agriculture, public space and safety This is an innovative project and there exist no such drone technology that attempts to reduce the noises coming from drones. The knowledge within this project will be converted into the first proof-of-concepts that makes the technology the first Minimum Viable Product suitable for market evaluations. The partners of this project include WhisperUAV, which has designed the first concept of a silent drone. As a fiber-reinforced 3D composite component printer, Fiberneering plays a crucial role in the (further) development of silent drone technologies into testable prototypes. Sorama is involved as an expert company in the context of mapping the sound fields in and around drones. The University of Twente is involved as a consultant and co-developer, and Research group of mechatronics at Saxion is involved as concept developer, system and user requirement verifier and validator. As an unmanned systems innovation cluster, Space53 will be involved as innovation and networking consultant.
Dit project betreft de doorontwikkeling van eerdere projecten op het gebied van ontwerpen van producten met functionele oppervlakken. Het MKB heeft de sterke wens dat het reeds goed volwassen geworden Fablab Enschede uitgebreid wordt met een Expertisecentrum Functionele Oppervlakken voor kunststoffen. Dit expertisecentrum is een middel om toegepaste kennis te dissemineren onder zowel studenten als in het MKB. De reeds bestaande kennis zal in dit project worden uitgebreid met vier hoofdthema?s: " Kleinserie Statisch functionele oppervlakken " Grootserie Statisch functionele oppervlakken " Kleinserie Actief functionele oppervlakken " Grootserie Actief functionele oppervlakken Binnen ieder van deze hoofdthema?s wordt tenminste één toepassingscase onderzocht. Bestaande kennis op het gebied van Passief functionele oppervlakken, productietechnieken en basiskennis van bovenstaande thema?s zijn reeds in ruime mate voorhanden in o.a. het Fablab Enschede. Met beoogde ontwikkelingen wordt het mogelijk om producten met meer functionaliteit en meer intelligentie te ontwikkelen. Technologisch gezien passen de ontwikkelingen goed in de ambities van Saxion, HTSM ontwikkelingen en het mkb. Het resultaat van het project zal de oprichting zijn van een Expertisecentrum Functionele Oppervlakken, dat een uitbreiding wordt op het bestaande Fablab Enschede.
Aanleiding van project FUNCY is dat producten steeds kleiner worden en tegelijkertijd meer functies en elektronica bevatten. Voorbeelden van functies zijn zelfreinigend, esthetisch, elektrisch geleidend, antibacterieel en röntgenstraling-absorberend. Ook worden product vaak gepersonaliseerd naar wens van de gebruiker. Zo kan een product desgewenst van verschillende functies worden voorzien. Om de functies een plek te geven is in FUNCY toegepast onderzoek gedaan naar het ontwerpen en aanbrengen van functionele oppervlaktes. Door eigenschappen enkel aan te brengen daar waar ze nodig zijn, worden materiaal, volume en vaak kosten bespaard. Denk aan het direct aanbrengen van elektronische componenten op een behuizing, ter vervanging van een printplaat (PCB). Er is onderzocht welke technieken (binnenkort) beschikbaar zijn, en getest op applicatiemogelijkheden en eigenschappen. Er zijn verschillende bedrijfscases gedaan, waaronder een intelligente bouwhelm, een zelfreinigende security casing en gepersonaliseerde röntgenstraling-absorberende gezichtsbescherming. De kennis die is opgedaan in dit project is beschikbaar gekomen via www.funcy.nl en in het in dit project gerealiseerde OppervlakteLab. In dit OppervlakteLab kan men zelf aan de slag met de beschikbare onderzochte technieken om een eigen product van functionele oppervlakte te voorzien. De faciliteiten zijn onder andere een coronapen voor een verbeterde hechting op kunststof, een vapor smoother om 3D prints van ABS glad en glanzend af te werken, coatings om waterafstotende oppervlaktes te maken, elektrisch geleidende- folie en 3D print filamenten, een galvaniseer-set en een zeefdruk om geleidende inkt aan te brengen.