Service of SURF
© 2025 SURF
In foul decision-making by football referees, visual search is important for gathering task-specific information to determine whether a foul has occurred. Yet, little is known about the visual search behaviours underpinning excellent on-field decisions. The aim of this study was to examine the on-field visual search behaviour of elite and sub-elite football referees when calling a foul during a match. In doing so, we have also compared the accuracy and gaze behaviour for correct and incorrect calls. Elite and sub-elite referees (elite: N = 5, Mage ± SD = 29.8 ± 4.7yrs, Mexperience ± SD = 14.8 ± 3.7yrs; sub-elite: N = 9, Mage ± SD = 23.1 ± 1.6yrs, Mexperience ± SD = 8.4 ± 1.8yrs) officiated an actual football game while wearing a mobile eye-tracker, with on-field visual search behaviour compared between skill levels when calling a foul (Nelite = 66; Nsub−elite = 92). Results revealed that elite referees relied on a higher search rate (more fixations of shorter duration) compared to sub-elites, but with no differences in where they allocated their gaze, indicating that elites searched faster but did not necessarily direct gaze towards different locations. Correct decisions were associated with higher gaze entropy (i.e. less structure). In relying on more structured gaze patterns when making incorrect decisions, referees may fail to pick-up information specific to the foul situation. Referee development programmes might benefit by challenging the speed of information pickup but by avoiding pre-determined gaze patterns to improve the interpretation of fouls and increase the decision-making performance of referees.
We propose a novel deception detection system based on Rapid Serial Visual Presentation (RSVP). One motivation for the new method is to present stimuli on the fringe of awareness, such that it is more difficult for deceivers to confound the deception test using countermeasures. The proposed system is able to detect identity deception (by using the first names of participants) with a 100% hit rate (at an alpha level of 0.05). To achieve this, we extended the classic Event-Related Potential (ERP) techniques (such as peak-to-peak) by applying Randomisation, a form of Monte Carlo resampling, which we used to detect deception at an individual level. In order to make the deployment of the system simple and rapid, we utilised data from three electrodes only: Fz, Cz and Pz. We then combined data from the three electrodes using Fisher's method so that each participant was assigned a single p-value, which represents the combined probability that a specific participant was being deceptive. We also present subliminal salience search as a general method to determine what participants find salient by detecting breakthrough into conscious awareness using EEG.