Service of SURF
© 2025 SURF
To prepare medical students appropriately for the management of toxicological emergencies, we have developed a simulation-based medical education (SBME) training in acute clinical toxicology. Our aim is to report on the feasibility, evaluation and lessons learned of this training. Since 2019, each year approximately 180 fifth-year medical students are invited to participate in the SBME training. The training consists of an interactive lecture and two SBME stations. For each station, a team of students had to perform the primary assessment and management of an intoxicated patient. After the training, the students completed a questionnaire about their experiences and confidence in clinical toxicology. Overall, the vast majority of students agreed that the training provided a fun, interactive and stimulating way to teach about clinical toxicology. Additionally, they felt more confident regarding their skills in this area. Our pilot study shows that SBME training was well-evaluated and feasible over a longer period.
Adverse Outcome Pathways (AOPs) are conceptual frameworks that tie an initial perturbation (molecular initiat- ing event) to a phenotypic toxicological manifestation (adverse outcome), through a series of steps (key events). They provide therefore a standardized way to map and organize toxicological mechanistic information. As such, AOPs inform on key events underlying toxicity, thus supporting the development of New Approach Methodologies (NAMs), which aim to reduce the use of animal testing for toxicology purposes. However, the establishment of a novel AOP relies on the gathering of multiple streams of evidence and infor- mation, from available literature to knowledge databases. Often, this information is in the form of free text, also called unstructured text, which is not immediately digestible by a computer. This information is thus both tedious and increasingly time-consuming to process manually with the growing volume of data available. The advance- ment of machine learning provides alternative solutions to this challenge. To extract and organize information from relevant sources, it seems valuable to employ deep learning Natural Language Processing techniques. We review here some of the recent progress in the NLP field, and show how these techniques have already demonstrated value in the biomedical and toxicology areas. We also propose an approach to efficiently and reliably extract and combine relevant toxicological information from text. This data can be used to map underlying mechanisms that lead to toxicological effects and start building quantitative models, in particular AOPs, ultimately allowing animal-free human-based hazard and risk assessment.
To study the ways in which compounds can induce adverse effects, toxicologists have been constructing Adverse Outcome Pathways (AOPs). An AOP can be considered as a pragmatic tool to capture and visualize mechanisms underlying different types of toxicity inflicted by any kind of stressor, and describes the interactions between key entities that lead to the adverse outcome on multiple biological levels of organization. The construction or optimization of an AOP is a labor intensive process, which currently depends on the manual search, collection, reviewing and synthesis of available scientific literature. This process could however be largely facilitated using Natural Language Processing (NLP) to extract information contained in scientific literature in a systematic, objective, and rapid manner that would lead to greater accuracy and reproducibility. This would support researchers to invest their expertise in the substantive assessment of the AOPs by replacing the time spent on evidence gathering by a critical review of the data extracted by NLP. As case examples, we selected two frequent adversities observed in the liver: namely, cholestasis and steatosis denoting accumulation of bile and lipid, respectively. We used deep learning language models to recognize entities of interest in text and establish causal relationships between them. We demonstrate how an NLP pipeline combining Named Entity Recognition and a simple rules-based relationship extraction model helps screen compounds related to liver adversities in the literature, but also extract mechanistic information for how such adversities develop, from the molecular to the organismal level. Finally, we provide some perspectives opened by the recent progress in Large Language Models and how these could be used in the future. We propose this work brings two main contributions: 1) a proof-of-concept that NLP can support the extraction of information from text for modern toxicology and 2) a template open-source model for recognition of toxicological entities and extraction of their relationships. All resources are openly accessible via GitHub (https://github.com/ontox-project/en-tox).
In TOX FLOW ontwikkelen we proefdiervrije methoden om de invloed van giftige stoffen en complexe mengsels op de voortplanting en ontwikkeling van embryo's te bestuderen.Doel We willen met het project TOX FLOW dierproefvrije methoden ontwikkelen om de invloed van giftige stoffen op de voortplanting en ontwikkeling van embryo's te kunnen voorspellen. Het kost veel tijd en geld om veel verschillende chemische stoffen te testen mbv dierproeven. Bedrijven en overheden willen daarom graag dat er betrouwbare dierproefvrije methoden worden ontwikkeld, die ook geaccepteerd worden door regelgevende instanties in Europa (en daar buiten). Resultaten We brengen de inzichten uit het onderzoek in praktijk door: Standaardprocedures voor verschillende testmethoden beschikbaar te stellen Wetenschappelijke artikelen en presentaties voor onderzokers, bedrijven en overheden Europees Fonds voor Regionale Ontwikkeling (EFRO) is daarnaast bedoeld om economische groei te stimuleren. Er is veel aandacht voor commerciele toepassing van de resultaten Protocollen en stageplaatsen voor studenten uit het bachelor onderwijs. Looptijd 01 december 2018 - 31 december 2022 Aanpak In dit project worden eerder ontwikkelde methoden (met de worm C elegans, zebravisembryo’s en stamcellen) gecombineerd met in vitro huidmodellen om de effecten van complexe verbindingen te kunnen testen. Huidmodellen worden gebruikt om de blootstelling aan deze stoffen via de huid te kunnen meten. Dit onderzoek is van belang voor bedrijven die (chemische) producten ontwikkelen of hun producten op dierproeven laten testen door contract laboratoria (CRO's). Dit onderzoek is een vervolg op het project PreDART. DART staat voor Development And Reproduction Toxicology en wordt ook wel ontwikkelings- en reproductietoxicologie genoemd.Vrijwel alle bedrijven in de chemische industrie moeten hier op verplicht hun producten testen vanwege de Europese wet REACH.
In TOX FLOW ontwikkelen we proefdiervrije methoden om de invloed van giftige stoffen en complexe mengsels op de voortplanting en ontwikkeling van embryo's te bestuderen.Doel We willen met het project TOX FLOW dierproefvrije methoden ontwikkelen om de invloed van giftige stoffen op de voortplanting en ontwikkeling van embryo's te kunnen voorspellen. Het kost veel tijd en geld om veel verschillende chemische stoffen te testen mbv dierproeven. Bedrijven en overheden willen daarom graag dat er betrouwbare dierproefvrije methoden worden ontwikkeld, die ook geaccepteerd worden door regelgevende instanties in Europa (en daar buiten). Resultaten We brengen de inzichten uit het onderzoek in praktijk door: Standaardprocedures voor verschillende testmethoden beschikbaar te stellen Wetenschappelijke artikelen en presentaties voor onderzokers, bedrijven en overheden Europees Fonds voor Regionale Ontwikkeling (EFRO) is daarnaast bedoeld om economische groei te stimuleren. Er is veel aandacht voor commerciele toepassing van de resultaten Protocollen en stageplaatsen voor studenten uit het bachelor onderwijs. Looptijd 01 december 2018 - 31 december 2022 Aanpak In dit project worden eerder ontwikkelde methoden (met de worm C elegans, zebravisembryo’s en stamcellen) gecombineerd met in vitro huidmodellen om de effecten van complexe verbindingen te kunnen testen. Huidmodellen worden gebruikt om de blootstelling aan deze stoffen via de huid te kunnen meten. Dit onderzoek is van belang voor bedrijven die (chemische) producten ontwikkelen of hun producten op dierproeven laten testen door contract laboratoria (CRO's). Dit onderzoek is een vervolg op het project PreDART. DART staat voor Development And Reproduction Toxicology en wordt ook wel ontwikkelings- en reproductietoxicologie genoemd.Vrijwel alle bedrijven in de chemische industrie moeten hier op verplicht hun producten testen vanwege de Europese wet REACH.