Service of SURF
© 2025 SURF
Municipalities play an important role in tackling city logistics related matters, having many instruments at hand. However, it is not self-evident that all municipalities use these instruments to their full potential. A method to measure city logistics performance of municipalities can help in creating awareness and guidance, to ultimately lead to a more sustainable environment for inhabitants and businesses. Subsequently, this research is focused on a maturity model as a tool to assess the maturity level of a municipality for its performance related city logistics process management. Various criteria for measuring city logistics performance are studied and based on that the model is populated through three focus fields (Technical, Social and Corporate, and Policy), branching out into six areas of development: Information and communication technology, urban logistics planning, Stakeholder communication, Public Private Partnerships, Subsidisation and incentivisation, and Regulations. The CL3M model was tested for three municipalities, namely, municipality of Utrecht, Den Bosch and Groningen. Through these maturity assessments it became evident the model required specificity complementary to the existing assessment interview, and thus a SWOT analysis should be added as a conclusion during the maturity assessment.
Little progress has been made in recent years toward achieving a fully circular economy by 2050. Implementing circular urban supply chains is a major economic transformation that can only work if significant coordination problems between the actors involved are solved. On the one hand, this requires the implementation of efficient urban collection technologies, where process industries collaborate hand-in-hand with manufacturers, urban waste treatment, and city logistics specialists and are supported by digital solutions for visibility and planning. But on the other hand, it also requires implementing regional and urban ecosystems connected by innovative CO2-neutral circular city logistics systems smoothly and sustainably managing the regional flow of resources and data, often at large and with interfaces between industrial processes and private and private and public actors. What are relevant research questions from a city logistics perspective?
MULTIFILE
The IMPULS-2020 project DIGIREAL (BUas, 2021) aims to significantly strengthen BUAS’ Research and Development (R&D) on Digital Realities for the benefit of innovation in our sectoral industries. The project will furthermore help BUas to position itself in the emerging innovation ecosystems on Human Interaction, AI and Interactive Technologies. The pandemic has had a tremendous negative impact on BUas industrial sectors of research: Tourism, Leisure and Events, Hospitality and Facility, Built Environment and Logistics. Our partner industries are in great need of innovative responses to the crises. Data, AI combined with Interactive and Immersive Technologies (Games, VR/AR) can provide a partial solution, in line with the key-enabling technologies of the Smart Industry agenda. DIGIREAL builds upon our well-established expertise and capacity in entertainment and serious games and digital media (VR/AR). It furthermore strengthens our initial plans to venture into Data and Applied AI. Digital Realities offer great opportunities for sectoral industry research and innovation, such as experience measurement in Leisure and Hospitality, data-driven decision-making for (sustainable) tourism, geo-data simulations for Logistics and Digital Twins for Spatial Planning. Although BUas already has successful R&D projects in these areas, the synergy can and should significantly be improved. We propose a coherent one-year Impuls funded package to develop (in 2021): 1. A multi-year R&D program on Digital Realities, that leads to, 2. Strategic R&D proposals, in particular a SPRONG/sleuteltechnologie proposal; 3. Partnerships in the regional and national innovation ecosystem, in particular Mind Labs and Data Development Lab (DDL); 4. A shared Digital Realities Lab infrastructure, in particular hardware/software/peopleware for Augmented and Mixed Reality; 5. Leadership, support and operational capacity to achieve and support the above. The proposal presents a work program and management structure, with external partners in an advisory role.
A number of universities of applied sciences do a lot of research in the field of sustainable last mile logistics. Collaboration and coordination take place through joint projects or through seminars. However, this collaboration could be more structured so that researchers can always take full advantage of each other's knowledge and are not dependent on having or not having joint projects or seminars. This also concerns the question of how these studies can gain extra added value through joint programming (this can partly be done in the development of a tool/benchmark, see previous point), but also in having and getting research and knowledge from the different regions. Within the new research agenda of the Logistics Knowledge Agreement (the lectors platform of the CoE KennisDC Logistics), urban logistics has been named as one of the four core themes on which the involved universities of applied sciences want to collaborate across regions. In addition, there is only limited cooperation in the field of education around the theme of “urban logistics”. Students who want to graduate in urban logistics or do internships must therefore first learn a lot.
English: This living lab aims to support the creation, development and implementation of next generation concepts for sustainable healthcare logistics, with special attention for last mile solutions. Dutch healthcare providers are on the verge of a transition towards (more) sustainable business models, spurred by e.g., increasing healthcare costs, ongoing budget cuts, tight labor market conditions and increasing ecological awareness. Consequently, healthcare providers need to improve and innovate their business model and underlying logistics concept(s). Simultaneously, many cities are struggling with congestion in traffic, air quality and liveability in general. This calls for Last Mile Logistics (LML) concepts that can address challenges like effective and efficient resource planning, scheduling and utilization and, particularly, sustainability goals. LML can reduce environmental and social impact by decreasing emissions, congestion and pollution through effectively consolidating in-flows of goods and providing innovative solutions for care, wellbeing and related services. The research and initiatives in the living lab will address the following challenges: reducing the ecological footprint, reducing (healthcare-related) costs, improving service quality, decreasing loneliness of frail citizens and improving the livability of urban areas (reducing congestion and emissions). Given the scarcity and fragmentation of knowledge on healthcare logistics in organizations the living lab will also act as a learning community for (future) healthcare- and logistics professionals, thereby supporting the development of human capital. By working closely with related stakeholders and using a transdisciplinary research approach it is ensured that the developed knowledge and solutions deliver a contribution to societal challenges and have sound business potential.