Service of SURF
© 2025 SURF
BACKGROUND: General Practitioners (GPs) play a key role in the healthcare trajectory of patients. If the patient experiences problems that are typically non-life-threatening, such as the symptoms of post-intensive-care syndrome, the GP will be the first healthcare professional they consult. The primary aim of this study is to gain insight in the frequency of GP consultations during the year before hospital admission and the year after discharge for ICU survivors and a matched control group from the general population. The secondary aim of this study is to gain insight into differences between subgroups of the ICU population with respect to the frequency of GP consultations.METHODS: We conducted a retrospective cohort study, combining a national health insurance claims database and a national quality registry for ICUs. Clinical data of patients admitted to an ICU in 2013 were enriched with claims data from the years 2012, 2013 and 2014. Poisson regression was used to assess the differences in frequency of GP consultations between the ICU population and the control group.RESULTS: ICU patients have more consultations with GPs during the year before and after admission than individuals in the control group. In the last four weeks before admission, ICU patients have 3.58 (CI 3.37; 3.80) times more GP consultations than the control group, and during the first four weeks after discharge they have 4.98 (CI 4.74; 5.23) times more GP consultations. In the year after hospital discharge ICU survivors have an increased GP consultation rate compared to the year before their hospital admission.CONCLUSIONS: Close to hospital admission and shortly after hospital discharge, the frequency of GP consultations substantially increases in the population of ICU survivors. Even a year after hospital discharge, ICU survivors have increased GP consultation rates. Therefore, GPs should be well informed about the problems ICU patients suffer after discharge, in order to provide suitable follow-up care.
Physical activity is crucial in human life, whether in everyday activities or elite sports. It is important to maintain or improve physical performance, which depends on various factors such as the amount of physical activity, the capability, and the capacity of the individual. In daily life, it is significant to be physically active to maintain good health, intense exercise is not necessary, as simple daily activities contribute enough. In sports, it is essential to balance capacity, workload, and recovery to prevent performance decline or injury.With the introduction of wearable technology, it has become easier to monitor and analyse physical activity and performance data in daily life and sports. However, extracting personalised insights and predictions from the vast and complex data available is still a challenge.The study identified four main problems in data analytics related to physical activity and performance: limited personalised prediction due to data constraints, vast data complexity, need for sensitive performance measures, overly simplified models, and missing influential variables. We proposed end investigated potential solutions for each issue. These solutions involve leveraging personalised data from wearables, combining sensitive performance measures with various machine learning algorithms, incorporating causal modelling, and addressing the absence of influential variables in the data.Personalised data, machine learning, sensitive performance measures, advanced statistics, and causal modelling can help bridge the data analytics gap in understanding physical activity and performance. The research findings pave the way for more informed interventions and provide a foundation for future studies to further reduce this gap.
LINK
OBJECTIVES: To describe the types and prevalence of chronic conditions in an ICU population and a population-based control group during the year before ICU admission and to quantify the risk of developing new chronic conditions in ICU patients compared with the control group.DESIGN: We conducted a retrospective cohort study, combining a national health insurance claims database and a national quality registry for ICUs. Claims data in the timeframe 2012-2014 were combined with clinical data of patients who had been admitted to an ICU during 2013. To assess the differences in risk of developing new chronic conditions, ICU patients were compared with a population-based control group using logistic regression modeling.SETTING: Eighty-one Dutch ICUs.PATIENTS: All patients admitted to an ICU during 2013. A population-based control group was created, and weighted on the age, gender, and socio-economic status of the ICU population.INTERVENTIONS: None.MEASUREMENTS AND MAIN RESULTS: ICU patients (n = 56,760) have more chronic conditions compared with the control group (n = 75,232) during the year before ICU admission (p < 0.0001). After case-mix adjustment ICU patients had a higher risk of developing chronic conditions, with odds ratios ranging from 1.67 (CI, 1.29-2.17) for asthma to 24.35 (CI, 14.00-42.34) for epilepsy, compared with the control group.CONCLUSIONS: Due to the high prevalence of chronic conditions and the increased risk of developing new chronic conditions, ICU follow-up care is advised and may focus on the identification and treatment of the new developed chronic conditions.