Service of SURF
© 2025 SURF
The Sport Empowers Disabled Youth 2 (SEDY2) project encourages inclusion and equal opportunities in sport for youth with a disability by raising their sports and exercise participation in inclusive settings. It was important to ensure that the authentic views, wishes and feelings of youth with a disability regarding inclusion in sport were attained. Therefore, online focus groups were conducted with youth with a disability, their parents and sport professionals in Finland, Lithuania, Portugal and The Netherlands. Seven themes regarding inclusion in sport have been identified from these interviews: having a choice, sense of belonging, everyone can participate, same rights and equality, acknowledge that everyone is unique, inclusion is an ongoing process and terminology (language) is challenging.
The Sport Empowers Disabled Youth 2 (SEDY2) project encourages inclusion and equal opportunities in sport for youth with a disability by raising their sports and exercise participation in inclusive settings. It was important to ensure that the authentic views, wishes and feelings of youth with a disability regarding inclusion in sport were attained. Therefore, online focus groups were conducted with youth with a disability, their parents and sport professionals in Finland, Lithuania, Portugal and The Netherlands. During the online EUCAPA 2020 conference the preliminary results of these focus groups were presented.
Objective: To investigate the effects of a school-based once-a-week sports program on physical fitness, physical activity, and cardiometabolic health in children and adolescents with a physical disability. Methods: This controlled clinical trial included 71 children and adolescents from four schools for special education [mean age 13.7 (2.9) years, range 8–19, 55% boys]. Participants had various chronic health conditions including cerebral palsy (37%), other neuromuscular (44%), metabolic (8%), musculoskeletal (7%), and cardiovascular (4%) disorders. Before recruitment and based on the presence of school-based sports, schools were assigned as sport or control group. School-based sports were initiated and provided by motivated experienced physical educators. The sport group (n = 31) participated in a once-a-week school-based sports program for 6 months, which included team sports. The control group (n = 40) followed the regular curriculum. Anaerobic performance was assessed by the Muscle Power Sprint Test. Secondary outcome measures included aerobic performance, VO2 peak, strength, physical activity, blood pressure, arterial stiffness, body composition, and the metabolic profile. Results: A significant improvement of 16% in favor of the sport group was found for anaerobic performance (p = 0.003). In addition, the sport group lost 2.8% more fat mass compared to the control group (p = 0.007). No changes were found for aerobic performance, VO2 peak, physical activity, blood pressure, arterial stiffness, and the metabolic profile. Conclusion: Anaerobic performance and fat mass improved following a school-based sports program. These effects are promising for long-term fitness and health promotion, because sports sessions at school eliminate certain barriers for sports participation and adding a once-a-week sports session showed already positive effects for 6 months.
Horse riding falls under the “Sport for Life” disciplines, where a long-term equestrian development can provide a clear pathway of developmental stages to help individuals, inclusive of those with a disability, to pursue their goals in sport and physical activity, providing long-term health benefits. However, the biomechanical interaction between horse and (disabled) rider is not wholly understood, leaving challenges and opportunities for the horse riding sport. Therefore, the purpose of this KIEM project is to start an interdisciplinary collaboration between parties interested in integrating existing knowledge on horse and (disabled) rider interaction with any novel insights to be gained from analysing recently collected sensor data using the EquiMoves™ system. EquiMoves is based on the state-of-the-art inertial- and orientational-sensor system ProMove-mini from Inertia Technology B.V., a partner in this proposal. On the basis of analysing previously collected data, machine learning algorithms will be selected for implementation in existing or modified EquiMoves sensor hardware and software solutions. Target applications and follow-ups include: - Improving horse and (disabled) rider interaction for riders of all skill levels; - Objective evidence-based classification system for competitive grading of disabled riders in Para Dressage events; - Identifying biomechanical irregularities for detecting and/or preventing injuries of horses. Topic-wise, the project is connected to “Smart Technologies and Materials”, “High Tech Systems & Materials” and “Digital key technologies”. The core consortium of Saxion University of Applied Sciences, Rosmark Consultancy and Inertia Technology will receive feedback to project progress and outcomes from a panel of international experts (Utrecht University, Sport Horse Health Plan, University of Central Lancashire, Swedish University of Agricultural Sciences), combining a strong mix of expertise on horse and rider biomechanics, veterinary medicine, sensor hardware, data analysis and AI/machine learning algorithm development and implementation, all together presenting a solid collaborative base for derived RAAK-mkb, -publiek and/or -PRO follow-up projects.
Cross-Re-Tour supports European tourism SME while implementing digital and circular economy innovations. The three year project promotes uptake and replication by tourism SMEs of tools and solutions developed in other sectors, to mainstream green and circular tourism business operations.At the start of the project existing knowledge-gaps of tourism SMEs will be researched through online dialogues. This will be followed by a market scan, an overview of existing state of the art solutions to digital and green constraints in other economic sectors, which may be applied to tourism SME business operations: water, energy, food, plastic, transport and furniture /equipment. The scan identifies best practices from other sectors related to nudging of clients towards sustainable behaviour and nudging of staff on how to best engage with new tourism market segments.The next stage of the project relates to two design processes: an online diagnostic tool that allows for measuring and assessing (160) SME’s potential to adapt existing solutions in digital and green challenges, developed in other economic sectors. Next to this, a knowledge hub, addresses knowledge constraints and proposes solutions, business advisory services, training activities to SMEs participating. The hub acts as a matchmaker, bringing together 160 tourism SMEs searching for solutions, with suppliers of existing solutions developed in other sectors. The next key activity is a cross-domain open innovation programme, that will provide 80 tourism SMEs with financial support (up to EUR 30K). Examples of partnerships could be: a hotel and a supplier of refurbished matrasses for hospitals; a restaurant and a supplier of food rejected by supermarkets, a dance event organiser and a supplier of refurbished water bottles operating in the cruise industry, etc.The 80 cross-domain partnerships will be supported through the knowledge hub and their business innovation advisors. The goal is to develop a variety of innovative partnerships to assure that examples in all operational levels of tourism SMEs.The innovation projects shall be presented during a show-and-share event, combined with an investors’ pitch. The diagnostic tool, market scan, knowledge hub, as well as the show and share offer excellent opportunities to communicate results and possible impact of open innovation processes to a wider international audience of destination stakeholders and non-tourism partners. Societal issueSupporting the implementation of digital and circular economy solutions in tourism SMEs is key for its transition towards sustainable low-impact industry and society. Benefit for societySolutions are already developed in other sectors but the cross-over towards tourism is not happening. The project bridges this gap.
Over the last couple of years there is a growing interest in the role of the bicycle in Western urban transport systems as an alternative to car use. Cycling not only has positive environmental impacts, but also positive health effects through increased physical activity. From the observation of the Urban Intelligence team that cycling data and information was limited, we have started the development of cycleprint. Cycleprint stands for Cycle Policy Renewal and INnovation by means of tracking Technology with the objective to enable more customer friendly cycle policy.The initial objective of Cycleprint was to translate GPS data into policy relevant insights to enable customer friendly cycle policy. The online toolkit what Cycleprint has become, answers the questions about:-route choice-speeds-delays at intersections -intensities Because of the success of Cycleprint in the Netherlands the range of features is still under development. As a result of the development of Cycleprint the Dutch organized the fietstelweek. In addition to Cycleprint the Urban Intelligence team developed the cyclescan to explore the effects of cycle network enhancement. The project is developed in direct collaboration with the Provincie Noord-Brabant and Metropoolregio Eindhoven to fulfill the ambition to become cycling region of the Netherlands in 2020.