Service of SURF
© 2025 SURF
Purpose: Most speech-language pathologists (SLPs) working with children with developmental language disorder (DLD) do not perform language sample analysis (LSA) on a regular basis, although they do regard LSA as highly informative for goal setting and evaluating grammatical therapy. The primary aim of this study was to identify facilitators, barriers, and needs related to performing LSA by Dutch SLPs working with children with DLD. The secondary aim was to investigate whether a training would change the actual performance of LSA. Method: A focus group with 11 SLPs working in Dutch speech-language pathology practices was conducted. Barriers, facilitators, and needs were identified using thematic analysis and categorized using the theoretical domain framework. To address the barriers, a training was developed using software program CLAN. Changes in barriers and use of LSA were evaluated with a survey sent to participants before, directly after, and 3 months posttraining. Results: The barriers reported in the focus group were SLPs’ lack of knowledge and skills, time investment, negative beliefs about their capabilities, differences in beliefs about their professional role, and no reimbursement from health insurance companies. Posttraining survey results revealed that LSA was not performed more often in daily practice. Using CLAN was not the solution according to participating SLPs. Time investment remained a huge barrier. Conclusions: A training in performing LSA did not resolve the time investment barrier experienced by SLPs. User-friendly software, developed in codesign with SLPs might provide a solution. For the short-term, shorter samples, preferably from narrative tasks, should be considered.
Spontaneous speech is an important source of information for aphasia research. It is essential to collect the right amount of data: enough for distinctions in the data to become meaningful, but not so much that the data collection becomes too expensive or places an undue burden on participants. The latter issue is an ethical consideration when working with participants that find speaking difficult, such as speakers with aphasia. So, how much speech data is enough to draw meaningful conclusions? How does the uncertainty around the estimation of model parameters in a predictive model vary as a function of the length of texts used for training?
Electromagnetic articulography (EMA) is one of the instrumental phonetic research methods used for recording and assessing articulatory movements. Usually, articulographic data are analysed together with standard audio recordings. This paper, however, demonstrates how coupling the articulograph with devices providing other types of information may be used in more advanced speech research. A novel measurement system is presented that consists of the AG 500 electromagnetic articulograph, a 16-channel microphone array with a dedicated audio recorder and a video module consisting of 3 high-speed cameras. It is argued that synchronization of all these devices allows for comparative analyses of results obtained with the three components. To complement the description of the system, the article presents innovative data analysis techniques developed by the authors as well as preliminary results of the system’s accuracy.