This paper explores the impact of the physical and social dimensions of the work environment on satisfaction and perceived productivity of knowledge workers in Dutch universities of applied sciences. The approach took the form of a literature review, multiple case study of six research centres using interviews and logbook analysis, and web-based survey (N = 188). Optimally facilitating knowledge production requires both space for concentration (to support internalisation of knowledge) and space for interaction (to support externalisation of knowledge). None of the work environments involved in the study adequately supported all the phases of knowledge development adequately. Cellular offices with personal desks are preferred for solo work and, whereas new workplace designs with a focus on the office as a meeting place support interaction and collaboration. Spatial layout and interaction have a stronger impact than comfort and absence of distraction. The spatial layout should support both in-depth concentration and communication, fit the internalisation/externalisation ratio of activities, and accommodate the proximity essential for collaborative knowledge development. Being able to choose is the key to success. In terms of research limitations, knowledge workers’ productivity was measured by self-assessment, but only a limited number of diaries were collected. The lessons learned can be used as inputs to decision-making processes regarding the design, implementation and management of working environments in higher education settings. Few studies have been conducted concerning the spatial preferences and needs of knowledge workers in universities of applied sciences. The results show that the physical dimension (comfort and layout) is more important for collective productivity, whereas individual productivity is more strongly influenced by the social dimension (interaction and distraction).
MULTIFILE
This paper explores the impact of the physical and social dimensions of the work environment on satisfaction and perceived productivity of knowledge workers in Dutch universities of applied sciences. The approach took the form of a literature review, multiple case study of six research centres using interviews and logbook analysis, and web-based survey (N = 188). Optimally facilitating knowledge production requires both space for concentration (to support internalisation of knowledge) and space for interaction (to support externalisation of knowledge). None of the work environments involved in the study adequately supported all the phases of knowledge development adequately. Cellular offices with personal desks are preferred for solo work and, whereas new workplace designs with a focus on the office as a meeting place support interaction and collaboration. Spatial layout and interaction have a stronger impact than comfort and absence of distraction. The spatial layout should support both in-depth concentration and communication, fit the internalisation/externalisation ratio of activities, and accommodate the proximity essential for collaborative knowledge development. Being able to choose is the key to success. In terms of research limitations, knowledge workers’ productivity was measured by self-assessment, but only a limited number of diaries were collected. The lessons learned can be used as inputs to decision-making processes regarding the design, implementation and management of working environments in higher education settings. Few studies have been conducted concerning the spatial preferences and needs of knowledge workers in universities of applied sciences. The results show that the physical dimension (comfort and layout) is more important for collective productivity, whereas individual productivity is more strongly influenced by the social dimension (interaction and distraction).
MULTIFILE
This paper explores the impact of the physical and social dimensions of the work environment on satisfaction and perceived productivity of knowledge workers in Dutch universities of applied sciences. The approach took the form of a literature review, multiple case study of six research centres using interviews and logbook analysis, and web-based survey (N = 188). Optimally facilitating knowledge production requires both space for concentration (to support internalisation of knowledge) and space for interaction (to support externalisation of knowledge). None of the work environments involved in the study adequately supported all the phases of knowledge development adequately. Cellular offices with personal desks are preferred for solo work and, whereas new workplace designs with a focus on the office as a meeting place support interaction and collaboration. Spatial layout and interaction have a stronger impact than comfort and absence of distraction. The spatial layout should support both in-depth concentration and communication, fit the internalisation/externalization ratio of activities, and accommodate the proximity essential for collaborative knowledge development. Being able to choose is the key to success. In terms of research limitations, knowledge workers’ productivity was measured by self-assessment, but only a limited number of diaries were collected. The lessons learned can be used as inputs to decision-making processes regarding the design, implementation and management of workingenvironments in higher education settings. Few studies have been conducted concerning the spatial preferences and needs of knowledge workers in universities of applied sciences. The results show that the physical dimension (comfort and layout) is more important for collective productivity, whereas individual productivity is more strongly influenced by the social dimension (interaction and distraction).
MULTIFILE
In the coming decades, a substantial number of electric vehicle (EV) chargers need to be installed. The Dutch Climate Accord, accordingly, urges for preparation of regional-scale spatial programs with focus on transport infrastructure for three major metropolitan regions among them Amsterdam Metropolitan Area (AMA). Spatial allocation of EV chargers could be approached at two different spatial scales. At the metropolitan scale, given the inter-regional flow of cars, the EV chargers of one neighbourhood could serve visitors from other neighbourhoods during days. At the neighbourhood scale, EV chargers need to be allocated as close as possible to electricity substations, and within a walkable distance from the final destination of EV drivers during days and nights, i.e. amenities, jobs, and dwellings. This study aims to bridge the gap in the previous studies, that is dealing with only of the two scales, by conducting a two-phase study on EV infrastructure. At the first phase of the study, the necessary number of new EV chargers in 353 4-digit postcodes of AMA will be calculated. On the basis of the findings of the Phase 1, as a case study, EV chargers will be allocated at the candidate street parking locations in the Amsterdam West borough. The methods of the study are Mixed-integer nonlinear programming, accessibility and street pattern analysis. The study will be conducted on the basis of data of regional scale travel behaviour survey and the location of dwellings, existing chargers, jobs, amenities, and electricity substations.
The population in rural areas in the northern provinces are aging in a much higher pace than in other parts of the Netherlands. Many young and higher educated citizens move out of these provinces. Quality of life in rural villages decreases likewise and the inhabitants that stay behind are more vulnerable, with lower income and educational levels. Recent decentralization policies put a larger burden on local constituencies to guarantee the quality of the living environment but a lot of them lack sufficient knowledge and capacity to tackle this complex issue.The initiators of this application have joined their knowledge and experience to put together a consortium with the aim to support these smaller constituencies in rural areas in the three northern provinces with a new and innovative methodology: the GO! approach. This approach was developed in the neigborhoods of Utrecht municipality and will be used for the first time in rural communities with a comparable size .This approach consists of the following steps:• First to identify possibilities to create a healthier living environment by analyzing available data on pollution, spatial layout and social cohesion.• To discuss the result of this analysis with local citizens and other local stakeholders in order to link the data with local experiences• To prioritize into major themes as a result of the combination of all this available information.• To link these major themes to combinations effective measures available from RIVM and international databases.• To present these combinations to the local government, their citizens and other local stakeholders in order to let them choose for an effective approach and inplemant it together in order to create a local healthier living environment.The GO! approach will provide local citizens and professionals with the necessary tools and knowledge to work jointly and effectively to realize a healthier living environment. The project partners that jointly started the consortium will put in effort during this first year to build and formalize the consortium and to make arrangements with several constituencies in the three northers provinces to formulate their own specific knowledge agenda as a basis for concrete project proposals in the second stage to be implemented with the support of the formalized consortium.
INXCES will use and enhance innovative 3D terrain analysis and visualization technology coupled with state-of-the-art satellite remote sensing to develop cost-effective risk assessment tools for urban flooding, aquifer recharge, ground stability and subsidence. INXCES will develop quick scan tools that will help decision makers and other actors to improve the understanding of urban and peri-urban terrains and identify options for cost effective implementation of water management solutions that reduce the negative impacts of extreme events, maximize beneficial uses of rainwater and stormwater for small to intermediate events and provide long-term resilience in light of future climate changes. The INXCES approach optimizes the multiple benefits of urban ecosystems, thereby stimulating widespread implementation of nature-based solutions on the urban catchment scale.INXCES will develop new innovative technological methods for risk assessment and mitigation of extreme hydroclimatic events and optimization of urban water-dependent ecosystem services at the catchment level, for a spectrum of rainfall events. It is widely acknowledged that extreme events such as floods and droughts are an increasing challenge, particularly in urban areas. The frequency and intensity of floods and droughts pose challenges for economic and social development, negatively affecting the quality of life of urban populations. Prevention and mitigation of the consequences of hydroclimatic extreme events are dependent on the time scale. Floods are typically a consequence of intense rainfall events with short duration. In relation to prolonged droughts however, a much slower timescale needs to be considered, connected to groundwater level reductions, desiccation and negative consequences for growing conditions and potential ground – and building stability.INXCES will take a holistic spatial and temporal approach to the urban water balance at a catchment scale and perform technical-scientific research to assess, mitigate and build resilience in cities against extreme hydroclimatic events with nature-based solutions.INXCES will use and enhance innovative 3D terrain analysis and visualization technology coupled with state-of-the-art satellite remote sensing to develop cost-effective risk assessment tools for urban flooding, aquifer recharge, ground stability and subsidence. INXCES will develop quick scan tools that will help decision makers and other actors to improve the understanding of urban and peri-urban terrains and identify options for cost effective implementation of water management solutions that reduce the negative impacts of extreme events, maximize beneficial uses of rainwater and stormwater for small to intermediate events and provide long-term resilience in light of future climate changes. The INXCES approach optimizes the multiple benefits of urban ecosystems, thereby stimulating widespread implementation of nature-based solutions on the urban catchment scale.