Service of SURF
© 2025 SURF
Rubberpersen is een plaatvervormingsproces, waarbij één of meer productgebonden mallen (of matrijzen) en een rubberkussen (als tweede matrijshelft) worden toegepast. Omdat het rubberkussen universeel is, kan het rubberkussen worden gebruikt voor vele verschillende productvormen. Tijdens de perscyclus vervormt het rubber de platine over of in de productgebonden matrijs, waarbij het rubber elastisch vervormt. Na het wegnemen van de belasting veert het rubber terug naar de oorspronkelijke vorm, terwijl de plaatuitslag de gewenste productvorm heeft gekregen. Het belangrijkste voordeel van het rubberpersen is de lage gereedschapskosten. Daardoor is het rubberpersen geschikt voor een productengamma met vele verschillende vormen gemaakt in kleine series. Verder is het mogelijk rubberpersen toe te passen voor producten met gepolijste oppervlakken of producten van voorbeklede plaat en behoort het van binnenuit vervormen van buis ook tot de mogelijkheden. De investeringen, die nodig zijn om het proces te implementeren op een bestaande hydraulische pers, zijn laag.
Legislation in the Netherlands requires routine analysis of drinking water samples for cultivable Legionella species from high-priority installations. A field study was conducted to investigate the presence of Legionella species in thermostatic shower mixer taps. Water samples and the interior of ten thermostatic shower mixer taps were investigated for cultivable Legionella species. In seven cases, Legionella species was found in at least one of the samples. In four cases, Legionella species was detected in the biofilm on the thermostatic shower mixer taps interior, with the highest values on rubber parts, and in five cases in the cold supply water. These results show that thermostatic shower mixer taps can play a role in exceeding the threshold limit for cultivable Legionella species, but the cold supply water can also be responsible. Practical implications: This study showed that contamination of thermostatic shower mixer taps (TSMTs) with Legionella spp. was frequently observed in combination with contamination of the water system. Consequently, a combined focus is necessary to prevent the proliferation of cultivable Legionella spp. in TSMTs. In addition, the results also demonstrated that biofilms on rubbers inside the TSMT had high numbers of Legionella spp., probably because rubber contains relatively high concentrations of biodegradable substrates. Therefore, improvement of the rubber materials is necessary to reduce the proliferation of cultivable Legionella spp. in TSMTs.
From the article: This paper describes the external IT security analysis of an international corporate organization, containing a technical and a social perspective, resulting in a proposed repeatable approach and lessons learned for applying this approach. Part of the security analysis was the utilization of a social engineering experiment, as this could be used to discover employee related risks. This approach was based on multiple signals that indicated a low IT security awareness level among employees as well as the results of a preliminary technical analysis. To carry out the social engineering experiment, two techniques were used. The first technique was to send phishing emails to both the system administrators and other employees of the company. The second technique comprised the infiltration of the office itself to test the physical security, after which two probes were left behind. The social engineering experiment proved that general IT security awareness among employees was very low. The results allowed the research team to infiltrate the network and have the possibility to disable or hamper crucial processes. Social engineering experiments can play an important role in conducting security analyses, by showing security vulnerabilities and raising awareness within a company. Therefore, further research should focus on the standardization of social engineering experiments to be used in security analyses and further development of the approach itself. This paper provides a detailed description of the used methods and the reasoning behind them as a stepping stone for future research on this subject. van Liempd, D., Sjouw, A., Smakman, M., & Smit, K. (2019). Social Engineering As An Approach For Probing Organizations To Improve It Security: A Case Study At A Large International Firm In The Transport Industry. 119-126. https://doi.org/10.33965/es2019_201904l015
MULTIFILE
De kunstgrasberg in Nederland is groeiende. In april 2019 hebben een aantal bedrijven, zijnde ketenpartners, de handen in een geslagen om dit te doen veranderen, en hebben GBN Artificial Grass Recycling (GBN-AGR) opgericht. Dit heeft in juni 2020 geresulteerd in een fabriek voor de recycling van de kunstgrasmatten. De eindproducten van deze fabriek zijn circulair grondstoffen zoals circulair zand, circulair SBR, circulair TPE en RTA. Deze grondstoffen worden op traditionele productiewijze in mallen geperst en waaruit rubbertegels, kantplanken, picknicksets worden vervaardigd. Gezien de hoeveelheid aan kunstgrasmatten is er behoefte vanuit de ketenpartners om meer en hoogwaardige producten te realiseren. In dit onderzoek wordt een verkenning gedaan naar de mogelijkheid om gerecycled kunstgras te gaan 3D printen. Zo dat er in de toekomst hoogwaardige en vernieuwde producten uit te vaardigen zijn. Ook zijn de huidige 3D printbedrijven nog niet bekend zijn met circulaire grondstoffen uit gerecycled kunstgras, aangezien het 3D printfilament daarvan nog niet voor handen is. Via materiaalonderzoek, ontwikkeling van 3D printfilament, testen van het filament wordt de eerste aanzet gegeven om tot een grondstof te komen die voor hoogwaardige producten kan worden ingezet. Tevens wordt een productontwerp voor een product gecreëerd. En wordt er een prototype, eventueel op schaal gefabriceerd met het 3D printfilament afkomst van de circulaire grondstoffen van het gerecycled kunstgras. Het einddoel is om de kunstgrasberg in Nederland te doen krimpen, door: - Aantoonbaar te maken aan de maakindustrie dat gerecycled kunstgras een basisgrondstof kan zijn voor producten. - 3D printen een productiemethode is dat voor bepaalde toepassingen voordelen kan hebben om hoogwaardige producten van gerecycled kunstgras mee te maken, naast de al bestaande traditionele productiemethoden.
Op weg naar een circulaire maatschappij ligt een grote uitdaging bij de ontwikkeling van producten die om bijvoorbeeld medische reden slechts eenmalig gebruikt kunnen worden zoals beschermende handschoenen. Enerzijds is kwaliteit en comfort belangrijk, anderzijds moeten kosten beperkt zijn. Twee ziekenhuizen, Erasmus MC (Rotterdam) en Reinier de Graaf (Delft) hebben Biotec benaderd om een nieuw, duurzaam materiaal te ontwikkelen voor de medische wegwerphandschoen, één van de meest gebruikte disposables in ziekenhuizen. Momenteel worden deze handschoenen meestal gemaakt van een synthetisch gecarboxyleerd nitril-butadiene rubber. Het ontwikkelen van compleet biogebaseerde, hoogwaardige en goedkope medische wegwerphandschoenen is een zeer tijd- en kapitaal intensief proces. Een eerste stap naar een duurzamer en betaalbaar alternatief is het gebruik van een biogebaseerd vulmiddel. In dit technologisch haalbaarheidsonderzoek zal nagegaan worden wat het effect is van het toevoegen van goedkope biogebaseerde vulmiddelen op de stabiliteit van de voor handschoenen gebruikte latex, de verwerkbaarheid tot een rubber (curing) en de eigenschappen van de verkregen rubber. Tevens zal een eerste kostencalculatie en duurzaamheid assessment worden uitgevoerd op basis van de verkregen technologische resultaten. Zuyd heeft veel kennis opgebouwd op het gebied van (biogebaseerde) materiaalontwikkeling en heeft een groot netwerk van materiaalproducenten om vervolgtrajecten samen mee op te zetten. Biotec heeft veel kennis van de zorgmarkt. Op basis van resultaten van dit project zal samen een verdere ontwikkelstrategie worden bepaald.
Dit project sluit naadloos aan op de Nationale transitieagenda circulaire economie voor de materialengroep ThermoPlastische Composieten (TPC): (Ontwikkelrichting 1: Preventie): Dankzij de toepassing van vezels kan zaanzienlijk op het verbruik van materialen worden bespaard, hetgeen bovendien kan leiden tot kostenbesparingen en tot CO2 besparing tijdens de productiefase en de gebruiksfase. (Ontwikkelrichting 2: Meer hernieuwbare kunststoffen): Door toepassing van gerecyclede en biokunststoffen, die vervolgens ook goed recyclebaar zijn en in de meeste gevallen bioafbreekbaar wordt een belangrijke bijdrage aan de hernieuwbaarheid geleverd. Het Lectoraat Lichtgewicht Construeren verricht al meer dan 5 jaar onderzoek naar industriële verwerkingstechnieken voor TPCs ten behoeve van grootserie producten, maar tot nog toe is nauwelijks onderzoek verricht naar beoogde materialen. Het Lectoraat Sustainable Polymers van de NHL Stenden hogeschool verricht al jaren onderzoek naar bio-gebaseerde en bioafbreekbaar thermoplasten en vezels. Hoewel er ook al veel toegepaste kennis is opgedaan met biocomposieten, zijn de cruciale verwerkingstechnieken in dit project geheel nieuw voor het betrokken lectoraat, en ook geheel nieuw in de TPC markt. Nieuw in dit project betreft daarom de circulariteit van de te onderzoeken TPC materialen in combinatie met de nieuwste grootserie productietechnieken. Iedere vezel-thermoplast combinatie heeft zijn specifieke eigenschappen ten aanzien van maakbaarheid, verwerkbaarheid en uiteindelijke eigenschappen bij gebruik. Deelnemende bedrijven willen de circulariteit van hun materialen nog verder vergroten en hebben daarom behoefte aan verder onderzoek. De centrale onderzoeksvraag luidt: In hoeverre zijn circulaire thermoplastische composieten te ontwikkelen die seriematig te verwerken zijn met de nieuwste TPC-processen? Bij de uitwerking van de onderzoeksvraag richten we ons concreet op onderzoek naar: • Produceerbaarheid van halffabricaten (commingled weefsels, tape, inserts) van circulaire TPCs • Verwerkbaarheid in producten en recyclebaarheid van circulaire TPCs • Bepalen van materiaalprestaties, waaronder: mechanische eigenschapen, levenscyclus analyse (LCA) en bestendigheid tegen weersinvloeden van circulaire TPCs