Background. Recent research has shown that the Fitkids Treadmill Test (FTT) is a valid and reproducible exercise test for the assessment of aerobic exercise capacity in children and adolescents who are healthy. Objective. The study objective was to provide sex- and age-related normative values for FTT performance in children and adolescents who were healthy, developing typically, and 6 to 18 years of age. Design. This was a cross-sectional, observational study. Methods. Three hundred fifty-six children and adolescents who were healthy (174 boys and 182 girls; mean age12.9 years, SD3.7) performed the FTT to their maximal effort to assess time to exhaustion (TTE). The least-mean-square method was used to generate sex- and age-related centile charts (P3, P10, P25, P50, P75, P90, and P97) for TTE on the FTT. Results. In boys, the reference curve (P50) showed an almost linear increase in TTE with age, from 8.8 minutes at 6 years of age to 16.1 minutes at 18 years of age. In girls, the P50 values for TTE increased from 8.8 minutes at 6 years of age to 12.5 minutes at 18 years of age, with a plateau in TTE starting at approximately 10 years of age. Limitations. Youth who were not white were underrepresented in this study. Conclusions. This study describes sex- and age-related normative values for FTT performance in children and adolescents who were healthy, developing typically, and 6 to 18 years of age. These age- and sex-related normative values will increase the usefulness of the FTT in clinical practice.
Background. Recent research has shown that the Fitkids Treadmill Test (FTT) is a valid and reproducible exercise test for the assessment of aerobic exercise capacity in children and adolescents who are healthy. Objective. The study objective was to provide sex- and age-related normative values for FTT performance in children and adolescents who were healthy, developing typically, and 6 to 18 years of age. Design. This was a cross-sectional, observational study. Methods. Three hundred fifty-six children and adolescents who were healthy (174 boys and 182 girls; mean age12.9 years, SD3.7) performed the FTT to their maximal effort to assess time to exhaustion (TTE). The least-mean-square method was used to generate sex- and age-related centile charts (P3, P10, P25, P50, P75, P90, and P97) for TTE on the FTT. Results. In boys, the reference curve (P50) showed an almost linear increase in TTE with age, from 8.8 minutes at 6 years of age to 16.1 minutes at 18 years of age. In girls, the P50 values for TTE increased from 8.8 minutes at 6 years of age to 12.5 minutes at 18 years of age, with a plateau in TTE starting at approximately 10 years of age. Limitations. Youth who were not white were underrepresented in this study. Conclusions. This study describes sex- and age-related normative values for FTT performance in children and adolescents who were healthy, developing typically, and 6 to 18 years of age. These age- and sex-related normative values will increase the usefulness of the FTT in clinical practice.
Objective Primary to provide an overview of diagnostic accuracy for clinical tests for common elbow (sport) injuries, secondary accompanied by reproducible instructions to perform these tests. Design A systematic literature review according to the PRISMA statement. Data sources A comprehensive literature search was performed in MEDLINE via PubMed and EMBASE. Eligibility criteria We included studies reporting diagnostic accuracy and a description on the performance for elbow tests, targeting the following conditions: distal biceps rupture, triceps rupture, posteromedial impingement, medial collateral ligament (MCL) insufficiency, posterolateral rotatory instability (PLRI), lateral epicondylitis and medial epicondylitis. After identifying the articles, the methodological quality was assessed using the QUADAS-2 checklist. Results Our primary literature search yielded 1144 hits. After assessment 10 articles were included: six for distal biceps rupture, one for MCL insufficiency, two for PLRI and one for lateral epicondylitis. No articles were selected for triceps rupture, posteromedial impingement and medial epicondylitis. Quality assessment showed high or unclear risk of bias in nine studies. We described 24 test procedures of which 14 tests contained data on diagnostic accuracy. Conclusions Numerous clinical tests for the elbow were described in literature, seldom accompanied with data on diagnostic accuracy. None of the described tests can provide adequate certainty to rule in or rule out a disease based on sufficient diagnostic accuracy.
LINK
Various companies in diagnostic testing struggle with the same “valley of death” challenge. In order to further develop their sensing application, they rely on the technological readiness of easy and reproducible read-out systems. Photonic chips can be very sensitive sensors and can be made application-specific when coated with a properly chosen bio-functionalized layer. Here the challenge lies in the optical coupling of the active components (light source and detector) to the (disposable) photonic sensor chip. For the technology to be commercially viable, the price of the disposable photonic sensor chip should be as low as possible. The coupling of light from the source to the photonic sensor chip and back to the detectors requires a positioning accuracy of less than 1 micrometer, which is a tremendous challenge. In this research proposal, we want to investigate which of the six degrees of freedom (three translational and three rotational) are the most crucial when aligning photonic sensor chips with the external active components. Knowing these degrees of freedom and their respective range we can develop and test an automated alignment tool which can realize photonic sensor chip alignment reproducibly and fully autonomously. The consortium with expertise and contributions in the value chain of photonics interfacing, system and mechanical engineering will investigate a two-step solution. This solution comprises a passive pre-alignment step (a mechanical stop determines the position), followed by an active alignment step (an algorithm moves the source to the optimal position with respect to the chip). The results will be integrated into a demonstrator that performs an automated procedure that aligns a passive photonic chip with a terminal that contains the active components. The demonstrator is successful if adequate optical coupling of the passive photonic chip with the external active components is realized fully automatically, without the need of operator intervention.
Implanting biocompatible materials is nothing new, 3D printing of cells and extracellular matrix is well underway so growing replacement tissues in a lab is within reach. However, certain obstacles remain: How to culture functional tissues with robust and reproducible 3D architecture? Application of support structures can aid, but what if such scaffolds obstruct functionality of the graft while having limited chance of being degraded within the recipient’s body? Bioplastics are polymers of natural origin that can be degraded enzymatically. We want to use bioplastics for production of 3D printed mesh scaffolds that support cell adhesion, proliferation, differentiation, and maturation (Fig. 1). These scaffolds are designed to be temporal and sacrificial: enzymes will be used to remove the scaffold in a tissue friendly manner prior to implantation allowing tailor made, functional and ideally ‘self-only’ grafts.